, Volume 4, Issue 1, pp 121–133 | Cite as

A retrial model in a nonstationary regime

  • M. Vázquez


In this article we analyze a retrial queuing system where customers in the orbit join a queue with FCFS discipline. We adopt a nonstationary regime. We derive some probabilities using the theory of semiregenerative processes. We obtain an integral estimation for the difference between blocking probabilities in stationary and nonstationary regimes.


Retrial Queueing Systems Renewal Markovian Process Semiregenerative Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Çinlar, E. (1975). Introduction to stochastic processes, Prentice-Hall.Google Scholar
  2. Choi, B.D., K.H. Rhee and K.K. Park (1993). TheM/G/1 retrial queue with retrial rate control policy. Probability in the Engineering and Informational Sciences7, 29–46.CrossRefGoogle Scholar
  3. Falin, G.I. (1990). A survey of retrial queues. Queueing Systems7, 127–168.CrossRefGoogle Scholar
  4. Farahmand, K. (1990). Single line queue with repeated demands. Queueing Systems6, 223–228.CrossRefGoogle Scholar
  5. Fayolle, G. (1986). A simple exchange with delayed feedbacks, in:Teletraffic Analysis and Computer Performance Evaluation, O.J. Boxma, J.W. Cohen, H.C. Tijms, eds. (North-holland, Amsterdam).Google Scholar
  6. Neuts, M.F. (1989). Structured stochastic matrices ofM/G/1 type and their applications, Marcel Dekker.Google Scholar
  7. Yang, T. and J.G.C. Templeton (1987). A survey on retrial queues. Queueing Systems2, 203–233.CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 1996

Authors and Affiliations

  • M. Vázquez
    • 1
  1. 1.Departamento de Análisis Económico I, Facultad de Ciencias EconómicasUniversidad Complutense de Madrid, Campus de SomosaguasMadridSpain

Personalised recommendations