manuscripta mathematica

, Volume 66, Issue 1, pp 277–293 | Cite as

Cohen-macaulay graphs

  • Rafael H. Villarreal
Article

Abstract

For a graph G we consider its associated ideal I(G). We uncover large classes of Cohen-Macaulay (=CM) graphs, in particular the full subclass of CM trees is presented. A formula for the Krull dimension of the symmetric algebra of I(G) is given along with a description of when this algebra is a domain. The first Koszul homology module of a CM tree is also studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Deo,Graph Theory with Applications to Engineering and Computer Science, Prentice Hall series in Automatic Computation, 1974Google Scholar
  2. [2]
    J. A. Eagon and M. Hochster, R-sequences and indeterminates, Quart. J. Math. Oxford25 (1974), 61–71MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Fröberg, A study of graded extremal rings and of monomial rings, Math. Scand.51 (1982), 22–34MATHMathSciNetGoogle Scholar
  4. [4]
    F. Harary,Graph Theory, Addison-Wesley, Reading, MA, 1972CrossRefGoogle Scholar
  5. [5]
    J. Herzog, A. Simis and W. V. Vasconcelos, Koszul homology and blowing up rings, Proc. Trento Commutative Algebra Conf., Lectures Notes in Pure and Applied Math., vol.84, Dekker, New York, 1983, 79–169Google Scholar
  6. [6]
    J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc.283 (1984), 661–683MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    C. Huneke and M. E. Rossi, The dimension and components of symmetric algebras, J. Algebra98 (1986), 200–210MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    I. Kaplansky,Commutative Rings, University of Chicago Press, Chicago, 1974MATHGoogle Scholar
  9. [9]
    H. Matsumura,Commutative Algebra, Benjamin/Cummings, Reading, MA, 1980MATHGoogle Scholar
  10. [10]
    L. Mirsky and H. Perfect, Systems of representatives, J. Math. Anal. Applic.15 (1966), 520–568MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    M. D. Plummer, On a family of line-critical graphs. Monatsh. Math.71 (1967), 40–48MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    G. Relsner, Cohen-Macaulay quotients of polynomial rings, Adv. Math.21 (1976), 31–49Google Scholar
  13. [13]
    A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math.103 (1981), 203–224MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Simis and W. V. Vasconcelos, Krull dimension and integrality of symmetric algebras, Manuscripta Math.61 (1988), 63–75MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    R. Stanley,Combinatorics and Commutative Algebra, Birkhäuser, Boston, 1983MATHGoogle Scholar
  16. [16]
    D. Taylor, Ideals generated by monomials in an R-sequence, Thesis, University of Chicago, 1966Google Scholar
  17. [17]
    W. V. Vasconcelos, Koszul homology and the structure of low codimension Cohen-Macaulay ideals, Trans. Amer. Math. Soc.301 (1987), 591–613MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    W. V. Vasconcelos, Symmetric Algebras, Preprint, 1988Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Rafael H. Villarreal
    • 1
  1. 1.Departamento de Matemáticas Escuela Superior de Física y MatemáticasInstituto Politécnico Nacional, Unidad Adolfo López MateosMéxico

Personalised recommendations