manuscripta mathematica

, Volume 67, Issue 1, pp 379–417 | Cite as

Chain complexes and stable categories

  • Bernhard Keller
Article

Abstract

Under suitable assumptions, we extend the inclusion of an additive subcategory\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mathcal{X}} \subset \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mathcal{A}}\) (=stable category of an exact category with enough injectives) to anS-functor [15]\(\mathcal{H}_{0]} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mathcal{X}} \to \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mathcal{A}}\), where\(\mathcal{H}_{0]} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\mathcal{X}}\) is the homotopy category of chain complexes concentrated in positive degrees. We thereby obtain a new proof for the key result of J. Rickard’s ‘Morita theory for Derived categories’ [17] and a sharpening of a theorem of Happel [12,10.10] on the ‘module-theoretic description’ of the derived category of a finite-dimensional algebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. A. Beilinson,Coherent sheaves on P n and problems of linear algebra, Funct. anal. and appl., Vol.12, 1979, 214–216MATHCrossRefGoogle Scholar
  2. [2]
    N. Bourbaki,Algèbre Commutative, Hermann, Paris, 1961Google Scholar
  3. [3]
    H. Cartan, S. Eilenberg,Homological algebra, Princeton University Press, 1956Google Scholar
  4. [4]
    P. Freyd,Abelian Categories, Harper & Row, New York, 1964MATHGoogle Scholar
  5. [5]
    P. Gabriel,Sur les catégories abéliennes, Bull. Soc. Math. France,90, 1962, 323–448MATHMathSciNetGoogle Scholar
  6. [6]
    P. Gabriel,The universal cover of a representation-finite algebra, Representations of algebras, Springer LNM903, 1981, 68–105Google Scholar
  7. [7]
    P. Gabriel, A. V. Roiter,Representation theory, to appearGoogle Scholar
  8. [8]
    A. Grothendieck,Sur quelques points d’algèbre homologique, Tôhoku Math. Journal,9, 1957, 119–221MATHMathSciNetGoogle Scholar
  9. [9]
    A. Grothendieck,Eléments de Géométrie Algébrique III, Etude cohomologique des faisceaux cohérents, Publ. Math. IHES,11, 1961Google Scholar
  10. [10]
    A. Grothendieck, J.L. Verdier,Préfaisceaux=Exposé I in SGA 4: Théorie des Topos et Cohomologie Etale des Schémas, Springer LNM269, 1974Google Scholar
  11. [11]
    D. Happel,Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Series,119, 1988Google Scholar
  12. [12]
    D. Happel,On the derived Category of a finite-dimensional Algebra, Comment. Math. Helv.,62, 1987, 339–389MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    R. Hartshorne,Residues and Duality, Springer LNM20, 1966Google Scholar
  14. [14]
    A. Heller,The loop-space functor in homological algebra, Trans. Amer. Math. Soc.,96, 1960, 382–394MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    B. Keller, D. Vossieck,Sous les catégories dérivées, C. R. Acad. Sci. Paris,305, Série I, 1987, 225–228MATHMathSciNetGoogle Scholar
  16. [16]
    D. Quillen,Higher Algebraic K-theory I, Springer LNM341, 1973, 85–147MathSciNetGoogle Scholar
  17. [17]
    J. Rickard,Morita theory for Derived Categories, Journal of the London Math. Soc.,39, 1989, 436–456MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J.-E. Roos,Sur les foncteurs dérivés de \(\underleftarrow {\lim }\).Applications, C. R. Acad. Sci. Paris,252, Série I, 1961, 3702–3704MATHMathSciNetGoogle Scholar
  19. [19]
    J.-L. Verdier,Catégories dérivées, état O, SGA 4 1/2, Springer LNM569, 1977, 262–311MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Bernhard Keller
    • 1
  1. 1.ETH-Zentrum, G 28.2ZurichSwitzerland

Personalised recommendations