manuscripta mathematica

, Volume 79, Issue 1, pp 267–282 | Cite as

The full automorphism groups of hyperelliptic Riemann surfaces

  • E. Bujalance
  • J. M. Gamboa
  • G. Gromadzki
Article

Abstract

For every integer g≥2 we obtain the complete list of groups acting as the full automorphisms groups on hyperelliptic Riemann surfaces of genus g.

1985 AMS subject classification

Primary 20H10 30F10 

Key words and phrases

Hyperelliptic Riemann surfaces automorphisms groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.F. Beardon,A primer on Riemann surfaces, London Math. Soc. Lect. Note Series78 (1984)Google Scholar
  2. [2]
    L. Bers,Universal Teichmüller space, Conference of complex analysis methods in physics. University of Indiana, June (1968)Google Scholar
  3. [3]
    O. Bolza, On binary sextics with linear transformations into themselves, Amer. J. Math.10 (1888), 47–70CrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Brandt, H. Stichtenoth, Die automorphismengruppen hyperelliptischer Kurven, Manuscripta Math55 (1986), 83–92MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S.A. Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra69 (1990), 233–270MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    E. Bujalance, J.J. Etayo, J.M. Gamboa, G. Gromadzki,Automorphism groups of compact bordered Klein surfaces.A combinatorial approach, Lect. Notes in Math1439, Springer-Verlag (1990)Google Scholar
  7. [7]
    A. Duma, W. Radtke, Automorphismen und Modulraum Galoisscher dreiblättriger Überlagerungen, Manuscripta Math.50 (1985), 215–228MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    C. Earle, Reduced Teichmüller spaces, Trans. Amer. Math. Soc.126 (1967), 54–63MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    W.D. Geyer, Invarianten binärer Formen; in: Classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math.412, 36–69 Springer-Verlag, 1974Google Scholar
  10. [10]
    L. Greenberg, Maximal Fuchsian groups. Bull. Amer. Math. Soc.69 (1963), 569–573MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    P. Henn, Dissertation, Heidelberg, 1975Google Scholar
  12. [12]
    A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann.41 (1893), 402–442Google Scholar
  13. [13]
    T. Kato, On the order of the automorphism group of a compact bordered Riemann surface of genus four, Kodai Math. J. 7 (1984), 120–132MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Komiya, A. Kuribayashi, On the structure of the automorphism group of a compact Riemann surface of genus 3. Algebraic Geometry, 253–299, Summer Meeting 1978, Copenhagen, Lecture Notes in Math.732, Springer-Verlag 1979Google Scholar
  15. [15]
    A.M. Macbeath,Discontinuous groups and birational transformations, Proc. of Dundee Summer School, Univ of St. Andrews (1961)Google Scholar
  16. [16]
    C. Maclachlan, Maximal normal Fuchsian groups. Illinois J. Math.15 (1971), 104–113MATHMathSciNetGoogle Scholar
  17. [17]
    C. Maclachlan, Smooth coverings of hyperelliptic surfaces. Quart. J. Math. Oxford (2)22 (1971), 117–123MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull London Math Soc.2 (1970), 319–323MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    D. Singerman, Finitely maximal Fuchsian groups. J. London Math. Soc. (2)6 (1972), 29–38MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. Wiman, Über die hyperelliptischen Kurven und diejenigen vom Geschlecht p=3, welche eindeutigen Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps Akademiens Handlingar21, 1, no-3 (1895)Google Scholar
  21. [21]
    H. Zieschang,Surfaces and planar discontinuous groups, Lect. Notes in Math.835, Springer-Verlag (1980)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • E. Bujalance
    • 1
  • J. M. Gamboa
    • 2
  • G. Gromadzki
    • 3
  1. 1.Dpto de Matemáticas FundamentalesFacultad de Ciencias U.N.E.D.Madrid(Spain)
  2. 2.Dpto. de Algebra, Facultad de Ciencias MatemáticasUniversidad ComplutenseMadrid(Spain)
  3. 3.Instytut Matematyki WSPBydgoszczPoland

Personalised recommendations