manuscripta mathematica

, Volume 90, Issue 1, pp 17–22

On the uniqueness of the analyticity of a proper G-action

  • Frank Kutzschebauch


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [G] Grauert, H.:On Levi’s problem and the imbedding of real-analytic manifolds. Ann. of Math,68, 2, 460–472 (1958)CrossRefMathSciNetGoogle Scholar
  2. [Gr] Grove, K.:Center of mass and G-local triviality ofG-bundles, Proc. AMS54, 352–354 (1976)MATHCrossRefMathSciNetGoogle Scholar
  3. [Gr, Ka] Grove, K., Karcher, H.:How to conjugate C 1-close group actions. Math. Z.132, 11–20 (19Google Scholar
  4. [H, H, K] Heinzner P., Huckleberry A. T., Kutzschebauch F.:Abels’ Theorem in the real analytic case and applications to complexifications. To appear in Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Decker 1994Google Scholar
  5. [Hi] Hirsch, M.:Differential topology. Berlin Heidelberg New York: Springer (1976)MATHGoogle Scholar
  6. [I] Illman, S.:Every proper smooth action of a Lie group is equivalent to a real analytic action: A contribution to Hilberts fifth problem. Preprint MPI/93-3 Bonn (1993)Google Scholar
  7. [Ka] Karcher, H.:Riemannian Center of Mass and Mollifier Smoothing. Comm. on Pure and Appl. Math.30 509–541 (1977)MATHMathSciNetGoogle Scholar
  8. [K, N] Kobayashi, S., Nomizu, K.:Foundations of Differential Geometry, Vol. II. Interscience Publishers, New York-London-Sydney, (1969)MATHGoogle Scholar
  9. [Ku] Kutzschebauch, F.:Eigentliche Wirkungen von Liegruppen auf reell-analytischen Mannigfaltigkeiten, Schriftenreihe des Graduiertenkollegs Geometrie und Mathematische Physik, Ruhr-Universität-Bochum,5, 1–53 (1994)Google Scholar
  10. [M, S] Matumoto, T., Shiota, M.:Unique triangulation of the orbit space of a differentiable transformation group and its applications, Adv. Stud. Pure Math.9, 41–55 (1986)MathSciNetGoogle Scholar
  11. [M, Z] Montgomery, D., Zippin, L.:Topological Transformation Groups, Interscience Publishers, New York and London, (1955)MATHGoogle Scholar
  12. [Pa 1] Palais, R.S.:On the existence of slices for actions of non-compact Lie groups. Ann. of Math.73, 2, 295–323 (1961)CrossRefMathSciNetGoogle Scholar
  13. [Pa 2] Palais, R.S.:Equivalence of nearby differentiable actions of a compact group. Bull. Amer. math. Soc.67, 362–364 (1961)MATHMathSciNetCrossRefGoogle Scholar
  14. [W] Whitney, H.:Differentiable manifolds, Ann. of Math.37, 645–680 (1936)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Frank Kutzschebauch
    • 1
  1. 1.Mathematisches Institut der UniversitätBaselSwitzerland

Personalised recommendations