Gersten’s conjecture for some complexes of vanishing cycles
Article
- 170 Downloads
- 14 Citations
Abstract
A result of Bloch-Ogus is extended by a proof which may apply top-adic vanishing cycles and theories satisfying the same formalism.
Keywords
Open Neighborhood Closed Subset Commutative Diagram Spectral Sequence Closed Subscheme
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]S. Bloch and A. Ogus, Gersten’s Conjecture and the Homology of Schemes,Ann. Sci. Ecole Norm. Sup. 7 (1974), 181–202zbMATHMathSciNetGoogle Scholar
- [2]O. Gabber, An injectivity property for étale cohomology,Compositio Math. 86 (1993), 1–14zbMATHMathSciNetGoogle Scholar
- [3]D. Quillen, Higher AlgebraicK-theory I, inLecture Notes in Math. 341 (1973), Springer-VerlagGoogle Scholar
- [4]A. Altman and S. Kleiman, Introduction to Grothendieck’s duality theory,Lecture Notes in Math. 146 (1970), Springer-VerlagGoogle Scholar
- [5]M. Artin, A. Grothendieck, J.L. Verdier, Théorie des Topos et Cohomologie Etale des Schémas (SGA4),Lecture Notes in Math. 269, 270, 305 (1972–1973), Springer-VerlagGoogle Scholar
- [6]R. Hartshorne, Residues and Duality,Lecture Notes in Math. 20 (1966), Springer-VerlagGoogle Scholar
- [7]J.-L. Colliot-Thélène, R. Hoobler and B. Kahn, Equivariant refinements of Gersten conjectureGoogle Scholar
- [8]D. Grayson, Universal exactness in algebraicK-theory,J. Pure Appl. Algebra 36 (1985), 139–141zbMATHCrossRefMathSciNetGoogle Scholar
- [9]M. Gros and S. Suwa, La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmiques,Duke Math. Journal 57 (1988), 615–628zbMATHCrossRefMathSciNetGoogle Scholar
- [10]M. Ojanguren, Quadratic forms over regular rings,Journal of the Indian Math. Soc. 44 (1980), 109–116zbMATHMathSciNetGoogle Scholar
Copyright information
© Springer-Verlag 1994