Advertisement

manuscripta mathematica

, Volume 85, Issue 1, pp 323–343 | Cite as

Gersten’s conjecture for some complexes of vanishing cycles

  • Ofer Gabber
Article

Abstract

A result of Bloch-Ogus is extended by a proof which may apply top-adic vanishing cycles and theories satisfying the same formalism.

Keywords

Open Neighborhood Closed Subset Commutative Diagram Spectral Sequence Closed Subscheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Bloch and A. Ogus, Gersten’s Conjecture and the Homology of Schemes,Ann. Sci. Ecole Norm. Sup. 7 (1974), 181–202zbMATHMathSciNetGoogle Scholar
  2. [2]
    O. Gabber, An injectivity property for étale cohomology,Compositio Math. 86 (1993), 1–14zbMATHMathSciNetGoogle Scholar
  3. [3]
    D. Quillen, Higher AlgebraicK-theory I, inLecture Notes in Math. 341 (1973), Springer-VerlagGoogle Scholar
  4. [4]
    A. Altman and S. Kleiman, Introduction to Grothendieck’s duality theory,Lecture Notes in Math. 146 (1970), Springer-VerlagGoogle Scholar
  5. [5]
    M. Artin, A. Grothendieck, J.L. Verdier, Théorie des Topos et Cohomologie Etale des Schémas (SGA4),Lecture Notes in Math. 269, 270, 305 (1972–1973), Springer-VerlagGoogle Scholar
  6. [6]
    R. Hartshorne, Residues and Duality,Lecture Notes in Math. 20 (1966), Springer-VerlagGoogle Scholar
  7. [7]
    J.-L. Colliot-Thélène, R. Hoobler and B. Kahn, Equivariant refinements of Gersten conjectureGoogle Scholar
  8. [8]
    D. Grayson, Universal exactness in algebraicK-theory,J. Pure Appl. Algebra 36 (1985), 139–141zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. Gros and S. Suwa, La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmiques,Duke Math. Journal 57 (1988), 615–628zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Ojanguren, Quadratic forms over regular rings,Journal of the Indian Math. Soc. 44 (1980), 109–116zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ofer Gabber
    • 1
  1. 1.I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations