Advertisement

Commentarii Mathematici Helvetici

, Volume 51, Issue 1, pp 57–91 | Cite as

On cauchy-frullani integrals

  • A. M. Ostrowski
Article
  • 77 Downloads

Keywords

Positive Measure Open Interval Integration Variable Swiss National Science Foundation Finite Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, R. P. [1]Limits of integrals, Duke M. J.9 (1942), 10–19.zbMATHCrossRefMathSciNetGoogle Scholar
  2. Agnew, R. P. [2]Mean values and Frullani integrals, Proc. Am. Math. Soc.2 (1951), 237–241.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Agnew, R. P. [3]Frullani integrals and variants of the Egoroff theorem on essentially uniform convergence, Publ. de l'Institut Math. de l'Académic Serbe des Sc. VI (1954), 12–16.MathSciNetGoogle Scholar
  4. Banach, S. [1]Sur l'équation fonctionelle f(x+y)=f(x)+f(y), Fund. Math.I (1920), 123–124.Google Scholar
  5. Cauchy, A. [1]Analyse Algébrique, Oeuvres compl. (2) III, première partie, chap. II, §III, Th. I, p. 541.Google Scholar
  6. Cauchy, A. [2]J. Ec. Pol. XIX e cah., XII, 1823; Oeuvres compl. (2) I, 335, 339.Google Scholar
  7. Cauchy, A. [3]Exercises de Mathématiques, 1827, Oeuvres compl. (2) VII, p. 157.Google Scholar
  8. Cauchy, A. [4]Ex. d'Analyse, II, 1841; Oeuvres compl. (2) XII, 416–417.Google Scholar
  9. Courant-Hilbert [1]Methoden der mathematischen Physik, 1. Auflage, Bd. 1 (1924), 393.Google Scholar
  10. Fréchet, M. [1]L'enseignement mathématique XV (1913), 390–393.Google Scholar
  11. Frullani, G. [1]Sopra Gli Integrali Definiti, Memorie della Societa Italiana delle Scienze, Modena20 (1928), pp. 448–467. See, however, for the publication date the footnote2) to sec. 1.Google Scholar
  12. Hardy, G. H. [1]A generalisation of Frullani's integral, Mess. of Math. (2)34 (1904), 11–18, 102; Collected Papers, V, pp. 371–379.Google Scholar
  13. Iyengar, K. S. K. [1]On Frullani integrals, J. Indian math. Soc. (2)4 (1940), 145–150, reprinted asMathSciNetzbMATHGoogle Scholar
  14. Iyengar, K. S. K. [2]On Frullani integrals, Proc. Cambridge phil. Soc.37 (1941), 9–13.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Lerch, M. [1]Sur une extension de la formule de Frullani, Verhandl. der Prager Akad., math.-phys. Klasse I2, 1891, pp. 123–131.Google Scholar
  16. Lerch, M. [2]Généralisation du théorème de Frullani, Sitz.-Berichte der Kgl. Böhm. Ges. der Wiss., Prag, 1893.Google Scholar
  17. Ostrowski, A. M. [1]On some generalisations of the Cauchy-Frullani integral Proc. Nat. Ac. Sc., Washington,35 (1949), 612–616.zbMATHCrossRefMathSciNetGoogle Scholar
  18. Sierpinski, W. [1]Sur l'équation fonctionelle f(x+y)=f(x)+f(y), Fund. Math.I (1920), 116–122.Google Scholar
  19. Titchmarsh, E. C. [1]The Zeta-function of Riemann, Cambridge Tracts in Math. and math. Physics, 1930, p. 30.Google Scholar
  20. Tricomi, F. G. [1]On the theorem of Frullani, Am. Math. Monthly LVII (1951), 158–164.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1976

Authors and Affiliations

  • A. M. Ostrowski
    • 1
  1. 1.Mathematisches InstitutBasel

Personalised recommendations