manuscripta mathematica

, Volume 88, Issue 1, pp 191–208

On the deformation theory of finite dimensional algebras

  • Christoff Geiss
  • José Antonio de la Peña
Article

1991 Mathematical subject classification

16G20 16E40 16G60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Assem and J. A. de la Peña. The fundamental groups of a triangular algebra. Preprint. Mexico (1994)Google Scholar
  2. [2]
    I. Assem and A. Skowroński. Indecomposable modules over multicoil algebras. Math. Scand.71, 31–61 (1992)MathSciNetGoogle Scholar
  3. [3]
    I. Assem and A. Skowroński. Multicoil algebras. Proc. ICRA VI Canadian Math. Soc. Conference Proc.14, 29–67 (1993)Google Scholar
  4. [4]
    K. Bongartz. Minimal singularities for representations of Dynkin quivers. Comment. Math. Helvetici69, 575–611 (1994)MathSciNetGoogle Scholar
  5. [5]
    M. Demazure and P. Gabriel. Introduction to algebraic geometry and algebraic groups. Mathematics Studies39. North Holland (1980)Google Scholar
  6. [6]
    P. Gabriel. Finite representation type is open. In: Representations of Algebras, Springer LNM488, 132–155 (1975)Google Scholar
  7. [7]
    P. Gabriel. Auslander-Reiten sequences and representation-finite algebras. Proc. ICRA II (Ottawa 1979). In Representation of Algebras, Springer LNM831, 1–71 (1980)Google Scholar
  8. [8]
    P. Gabriel and J. A. de la Peña. On algebras: wild and tame. In: Duration and change. Fifty years at Oberwolfach. Springer 177–210 (1994)Google Scholar
  9. [9]
    Ch. Geiss. On degenerations of tame and wild algebras. Arch. Math.64, 11–16 (1995)CrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Gerstenhaber. On the deformation of rings and algebras. Ann. Math.79, 59–103 (1964)CrossRefMathSciNetGoogle Scholar
  11. [11]
    M. Gerstenhaber and M. Schack. Relative Hochschild cohomology, rigid algebras and the Bockstein. J. Pure Appl. Alg.43, 53–74 (1986)CrossRefMathSciNetGoogle Scholar
  12. [12]
    D. Happel. Hochschild cohomology of finite dimensional algebras. Séminaire M.-P. Malliavin (Paris, 1987–88), LNM1404, Springer-Verlag 108–126 (1989)Google Scholar
  13. [13]
    J. C. Jantzen. Representation of algebraic groups. Pure Appl. Mat. V.131 Ac. Press (1989)Google Scholar
  14. [14]
    J. A. de la Peña. On the representation type of one-point extensions of tame concealed algebras. Manuscr. Math.61, 183–194 (1988)CrossRefGoogle Scholar
  15. [15]
    J. A. de la Peña. On the corank of the Tits form of a tame algebra. To appear in J. Pure Appl. Alg.Google Scholar
  16. [16]
    J.A. de la Peña and A. Skowroński. Forbidden subcategories of non-polynomial growth tame simply connected algebras. To appear Canadian J. Math.Google Scholar
  17. [17]
    J. A. de la Peña and A. Skowroński. Geometric and homological characterizations of polynomial growth simply connected algebras. Preprint. Mexico (1994)Google Scholar
  18. [18]
    C. M. Ringel. Tame algebras and integral quadratic forms. Springer, Berlin LNM1099 (1984)MATHGoogle Scholar
  19. [19]
    A. Skowroński. Simply connected algebras and Hochschild cohomology. Proc. ICRA VI (Ottawa, 1992), Can. Math. Soc. Proc. Vol.14, 431–447 (1993)Google Scholar
  20. [20]
    A. Skowroński. Cycle-finite algebras. To appear J. Pure Appl. Alg.Google Scholar
  21. [21]
    A. Skowroński. Criteria for polynomial growth of algebras. To appear Bull. Polish Ac.Google Scholar
  22. [22]
    D. Voigt. Induzierte Darstellungen in der Theorie der endlichen algebraischen Gruppen. Springer LNM592 (1977)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Christoff Geiss
    • 1
  • José Antonio de la Peña
    • 1
  1. 1.Instituto de MatemáticasUNAMMéxicoMéxico

Personalised recommendations