manuscripta mathematica

, Volume 76, Issue 1, pp 281–304 | Cite as

Unipotent characters of the Chevalley groupsD 4(q), q odd

  • Meinolf Geck
  • Götz Pfeiffer


Green Function Finite Group Weyl Group Irreducible Character Computer Algebra System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Borel, A. et. al.: Seminar on Algebraic Groups and Related Finite Groups. Lecture Notes in Mathematics 131, Springer Verlag, 1986Google Scholar
  2. [2]
    Broué, M. etMichel, J.: Blocs et séries de Lusztig dans un groupe réductif fini. J. reine angew. Math. 395 (1989), 56–67zbMATHMathSciNetGoogle Scholar
  3. [3]
    Carter, R. W.: Centralizers of semisimple elements in finite groups of Lie type. Proc. London Math. Soc. 37 (1978), 491–507zbMATHMathSciNetGoogle Scholar
  4. [4]
    Carter, R. W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley, New York, 1985zbMATHGoogle Scholar
  5. [5]
    Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: MAPLE-Reference Manual, 5th edition. University of Waterloo, 1988Google Scholar
  6. [6]
    Digne, F. et Michel, J.: Representations of finite groups of Lie type. London Math. Soc. Students Texts 21, Cambridge University Press, 1991Google Scholar
  7. [7]
    Fleischmann, P. andJaniszak, I.: On semisimple conjugacy classes of finite groups of Lie type. Preprint Nr. 1, Institut für experimentelle Mathematik, Essen, 1991Google Scholar
  8. [8]
    Fong, P. andSrinivasan, B.: The Blocks of Finite General Linear and Unitary Groups, Invent. Math. 69, 109–153 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Geck, M. andHiss, G.: Basic sets of Brauer characters of finite groups of Lie type. J. reine angew. Math. 418 (1991), 173–188zbMATHMathSciNetGoogle Scholar
  10. [10]
    Hiss, G.: Decomposition numbers of finite groups of Lie type in non-defining characteristic.In: Progress in Mathematics, Vol. 95, 405–418, Birkhäuser Verlag Basel 1991Google Scholar
  11. [11]
    Kawanaka, N.: Shintani Lifting and Gelfand-Graev Representations. Proc. Symp. Pure Math., Am. Math. Soc. 47 (1986), 575–616MathSciNetGoogle Scholar
  12. [12]
    Lambe, L. andSrinivasan, B.: A computation of Green functions for some classical groups. Comm. Algebra 18(10), 3507–3545 (1990)zbMATHMathSciNetGoogle Scholar
  13. [13]
    Lehrer, G.I.: On the values of characters of semisimple groups over finite fields. Osaka J. Math. 15 (1978), 77–99zbMATHMathSciNetGoogle Scholar
  14. [14]
    Lusztig, G.: Characters of reductive groups over a finite field. Annals of math. studies 107, Princeton University Press, 1984Google Scholar
  15. [15]
    Lusztig, G.: A unipotent support for irreducible representations. PreprintGoogle Scholar
  16. [16]
    Mizuno, K.: The conjugate classes of Chevalley groups of typeE 6. J. Fac. Sci. Univ. Tokyo 24 (1977), 525–563zbMATHMathSciNetGoogle Scholar
  17. [17]
    Schönert, M. (ed.): GAP 3.0 Manual, Lehrstuhl D für Mathematik, RWTH Aachen (1991)Google Scholar
  18. [18]
    Spaltenstein, N.: Caractères unipotents de\(^3 D_4 \left( {\mathbb{F}q} \right)\). Comm. Math. Helvetici 57 (1982), 676–691zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Steinberg, R.: The Representations ofGL(3, q), GL(4, q), PGL(3, q) andPGL(4, q). Can. J. Math. 3 (1951), 225–234zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Meinolf Geck
    • 1
  • Götz Pfeiffer
    • 1
  1. 1.Lehrstuhl D für MathematikRWTH AachenAachenGermany

Personalised recommendations