Advertisement

manuscripta mathematica

, Volume 73, Issue 1, pp 423–436 | Cite as

On monomial k-Buchsbaum curves in ℙ3

  • Tuân Lê Hoa
Article

Abstract

Using the theory of affine semigroup rings we describe all strictly 2-Buchsbaum monomial curves in ℙ3.

Keywords

Numerical Semigroup Local Cohomology Minimal Free Resolution Linear Diophantine Equation Veronese Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refernces

  1. [1]
    H. Bresinsky, Monomial Buchsbaum ideals in ℙ3. manuscripta math.47, 105–132 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Bresinsky, Minimal free resolutions of monomial curves in ℙk3. Linear Alg. Appl.59, 121–129 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    H. Bresinsky, On the Cohen-Macaulay property for monomial curves in ℙk3. Monatsheft für Math.98, 21–28 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Bresinsky and C. Huneke, Liaison of monomial curves in ℙ3. J. reine angew. Math.365, 33–66 (1986)zbMATHMathSciNetGoogle Scholar
  5. [5]
    H. Bresinsky, P. Schenzel and W. Vogel, On liaison, arithmetically Buchsbaum curves and monomial curves in ℙ3. J. Alg.86, 283–301 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Fiorentini and L.T. Hoa, On monomial k-Buchsbaum curves in ℙr. Ann. Mat. Univ. Ferrara (to appear)Google Scholar
  7. [7]
    M. Fiorentini and A.T. Lascu, Projective embeddings and linkage. Rend. Sem. Mat. Fis. Milano57, 161–182 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    A.V. Geramita, P. Maroscia and W. Vogel, A note on arithmetically Buchsbaum curves in ℙ3. Matematiche (Catania) XL, fasc. I–II, 21–28 (1985)MathSciNetGoogle Scholar
  9. [9]
    S. Goto, N. Suzuki and K. Watanabe, On affine semigroup rings. Japan. J. Math.2, 1–12 (1976)MathSciNetGoogle Scholar
  10. [10]
    L.T. Hoa, R.M. Miro-Roig and W. Vogel, On numerical invariants of locally Cohen-Macaulay schemes in ℙn. Preprint MPI/90-57, Bonn 1990Google Scholar
  11. [11]
    J. Milgliore, Topics in the theory of liaison of space curves. Thesis, Brown univ., Providence, R.I., 1983Google Scholar
  12. [12]
    J. Migliore and R.M. Miro-Roig, On k-Buchsbaum curves in ℙ3. Commun. Alg.18(8), 2403–2422 (1990)zbMATHMathSciNetGoogle Scholar
  13. [13]
    J. Stückrad and W. Vogel, Buchsbaum rings and applications. Berlin-Heidelberg-New York: Springer 1986Google Scholar
  14. [14]
    N. V. Trung, Classification of the double projections of Veronese varieties. J. Math. Kyoto Univ.22, 567–581 (1983)zbMATHGoogle Scholar
  15. [15]
    N. V. Trung and L. T. Hoa, Affine semigroup and Cohen-Macaulay rings generated by monomials. Trans. Amer. Math. Soc.298, 145–167 (1986)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Tuân Lê Hoa
    • 1
  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations