Advertisement

manuscripta mathematica

, Volume 73, Issue 1, pp 117–125 | Cite as

The trace to the boundary of Sobolev spaces on a snowflake

  • Hans Wallin
Article

Abstract

The trace to the boundary is defined for functions in a Sobolev space in a domain with fractal boundary, for instance von Koch's snowflake domain. The image and the kernel of the trace operator are characterized.

Keywords

Sobolev Space Besov Space Lipschitz Domain Extension Operator Trace Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Falconer, K.J.: The Geometry of, Fractal Sets. Cambridge Univ. Press, Cambridge (1985)zbMATHGoogle Scholar
  2. 2.
    Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Jonsson, A.: Markov's inequality and local polynomial approximation, Proc. Seminar on Function Spaces and Applications, Lund, 1986. Lecture Notes in Mathematics, 1302, Springer-Verlag, Berlin, 303–316 (1988)Google Scholar
  4. 4.
    Jonsson, A.: Besov spaces on surfaces with singularities. Dept. of Math., Univ. of Ume», No. 3 (1988), to appear in Manuscripta Math.Google Scholar
  5. 5.
    Jonsson, A. and Wallin, H.: A Whitney extension theorem inL p and Besov spaces. Ann. Inst. Fourier 28, 139–192 (1978)MathSciNetGoogle Scholar
  6. 6.
    Jonsson, A. and Wallin, H.: Function spaces on subsets ofR n. Math. Reports 2, Part 1, Harwood Acad. Publ., London (1984)zbMATHGoogle Scholar
  7. 7.
    Marschall, J.: The trace of Sobolev-Slobodeckij spaces on Lipschitz, domains. Manuscripta Math. 58, 47–65 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Meyers, N.G.: Continuity properties of potentials. Duke Math. J. 42, 157–166 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)zbMATHGoogle Scholar
  10. 10.
    Wallin, H.: The trace to the boundary of Sobolev spaces on a snowflake. Dept. of Math., Univ. of Ume», No. 5 (1989)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Hans Wallin
    • 1
  1. 1.Department of MathematicsUniversity of Ume»Ume»Sweden

Personalised recommendations