manuscripta mathematica

, Volume 83, Issue 1, pp 171–181 | Cite as

Quadratic forms between euclidean spheres

  • Paul Yiu
Article

Abstract

We study the relationship between the dimensions of euclidean spheres which admit a nonconstant homogeneous quadratic map between them. Givenm (respectivelyn), we determine the least (respectively greatest) possible value ofn (respectivelym) for which there exists a nonconstant homogeneous quadratic mapSmSn.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adem, J.: Construction of some normed maps. Bol. Soc. Mat. Mexicana20, 59–75 (1975)MATHMathSciNetGoogle Scholar
  2. 2.
    Hurwitz, A.: Über die Komposition der quadratischen Formen von beliebig vielen Variablen. Nachr. Akad. Wiss. Gött. II Math. Phys. Kl, 309–316 (1898), reprinted in Math. Werke, Bd 2, 565–571.Google Scholar
  3. 3.
    Lam, K.Y.: Construction of nonsingular bilinear maps. Topology6, 423–426 (1967)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lam, K.Y.: Some new results on composition of quadratic forms. Invent. Math.79, 467–474 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Lam, K.Y. and Yiu, P.: Geometry of normed bilinear maps and the 16-square problem. Math. Ann.284, 437–447 (1989)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lam. K.Y. and Yiu, P.: Retrieving hidden sums of squares formulae. Preprint.Google Scholar
  7. 7.
    Lam, T.Y. and Smith, T.L.: On Yuzvinsky's monomial pairings. Quart. J. Math. Oxford (to appear).Google Scholar
  8. 8.
    Shapiro, D.B.: Products of sums of squares. Expo. Math.2, 235–261 (1984)MATHGoogle Scholar
  9. 9.
    Smith. T.L. and Yiu, P.: Constructions of sums of squares formulae with integer coefficients. Bol. Soc. Mat. Mexicana (to appear).Google Scholar
  10. 10.
    Wood, R.: Polynomials maps from spheres to spheres. Invent. Math.5 163–168 (1968)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yiu, P.: Quadratic forms between spheres and the nonexistence of sums of squares formulae. Math. Proc. Camb. Phil. Soc.100, 493–504 (1986)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yiu, P.: On the product of two sums of 16 squares as a sum of squares of integral bilinear forms. Quart. J. Math. Oxford (2)41, 463–500 (1990)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yiu, P.: Composition of sums of squares with integer coefficients, in Lawrynowicz, J. (ed): Deformations of Mathematical Structures II, 7 −100, Kluwer Academic Publishers 1994Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Paul Yiu
    • 1
  1. 1.Department of MathematicsFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations