manuscripta mathematica

, Volume 89, Issue 1, pp 439–459 | Cite as

On a class of rational cuspidal plane curves

  • Hubert Flenner
  • Mikhail Zaidenberg


We obtain new examples and the complete list of the rational cuspidal plane curvesC with at least three cusps, one of which has multiplicitydegC-2. It occurs that these curves are projectively rigid. We also discuss the general problem of projective rigidity of rational cuspidal plane curves.

Mathematics Subject Classification

14H20 14H10 14H45 14D15 14N05 14N10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ar] E. Artal Bartolo. On fundamental group of rational cuspidal plane curves.Preprint Institut Fourier de mathématiques, Grenoble, 1995, 10p. (to appear)Google Scholar
  2. [EN] D. Eisenbud, W. D. Neumann. Three-dimensional link theory and invariants of plane curve singularities.Ann. Math. Stud. 110,Princeton Univ. Press, Princeton 1985zbMATHGoogle Scholar
  3. [FZ] H. Flenner, M. Zaidenberg.Q-acyclic surfaces and their deformations.Contemporary Mathem. 162 (1964), 143–208MathSciNetGoogle Scholar
  4. [De] A Degtyarev. Quintics inCP 2 with nonabelian fundamental group.Preprint Max-Planck-Institut für Mathematik, Bonn, 1995, 21p. (to appear)Google Scholar
  5. [Ii] Sh. Iitaka. On logarithmic Kodaira dimension of algebraic varieties. In:Complex Analysis and Algebraic Geometry, Cambridge Univ. Press, Cambridge e.a., 1977, 175–190Google Scholar
  6. [KoNaSa] R. Kobayashi, S. Nakamura, F. Sakai. A numerical characterization of ball quotients for normal surfaces with branch loci.Proc. Japan Acad. 65(A) (1989), 238–241MathSciNetGoogle Scholar
  7. [MaSa] T. Matsuoka, F. Sakai. The degree of rational cuspidal curves.Math. Ann. 285 (1989), 233–247zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Mil] J. Milnor. Singular points of complex hypersurfaces.Ann. Math. Stud. 61,Princeton Univ. Press, Princeton, 1968zbMATHGoogle Scholar
  9. [Na] M. Namba. Geometry of projective algebraic curves.Marcel Dekker, N.Y. a.e., 1984zbMATHGoogle Scholar
  10. [OZ1] S.Y. Orevkov, M.G. Zaidenberg. Some estimates for plane cuspidal curves. In:Journées singulières et jacobiennes, Grenoble 26–28 mai 1993. Grenoble, 1994, 93–116Google Scholar
  11. [OZ2] S.Y. Orevkov, M.G. Zaidenberg. On the number of singular points of plane curves. In:Algebraic Geometry. Proc. Conf., Saitama Univ., March 15–17, 1995, 22p. (to appear)Google Scholar
  12. [Sa] F. Sakai. Singularities of plane curves.Preprint (1990), 1–10Google Scholar
  13. [tD] T. tom Dieck. Symmetric homology planes.Math. Ann. 286 (1990), 143–152zbMATHCrossRefMathSciNetGoogle Scholar
  14. [tDP] T. tom Dieck, T. Petrie. Homology planes: An announcement and survey. In:Topological methods in algebraic transformation groups, Progress in Mathem. 80,Birkhäuser, Boston e.a., 1989, 27–48Google Scholar
  15. [Ts] S. Tsunoda. The structure of open algebraic surfaces and its application to plane curves.Proc. Japan Acad. 57(A) (1981), 230–232MathSciNetGoogle Scholar
  16. [Wak] I. Wakabayashi. On the logarithmic Kodaira dimension of the complement of a curve in ℙ2.Proc. Japan Acad. 54(A) (1978), 157–162MathSciNetGoogle Scholar
  17. [Wal] R. J. Walker. Algebraic curves.Princeton Univ. Press, Princeton, 1950zbMATHGoogle Scholar
  18. [Y1] H. Yoshihara. On plane rational curves.Proc. Japan Acad. 55(A) (1979), 152–155MathSciNetGoogle Scholar
  19. [Y2] H. Yoshihara. Rational curve with one cusp. I.Proc. Amer. Math. Soc. 89 (1983), 24–26; IIibid. 100 (1987), 405–406zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Y3] H. Yoshihara. Plane curves whose singular points are cusps.Proc. Amer. Math. Soc. 103 (1988), 737–740zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Y4] H. Yoshihara. Plane curves whose singular points are cusps and triple coverings of ℙ2.Manuscr. Math. 64 (1989), 169–187zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Hubert Flenner
    • 1
  • Mikhail Zaidenberg
    • 1
    • 2
  1. 1.Fakultät für MathematikRuhr Universität BochumBOCHUMGermany
  2. 2.Laboratoire de Mathématiques associé au CNRSUniversité Grenoble IMartin d'Hères-cédexFrance

Personalised recommendations