Commentarii Mathematici Helvetici

, Volume 60, Issue 1, pp 400–410 | Cite as

Indecomposables are standard

  • Klaus Bongartz


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Auslander, M. andReiten, I.,Representation theory of artin algebras IV, Communications in algebra5 (5) (1977), 443–518.MATHMathSciNetGoogle Scholar
  2. [2]
    Bautista, R.,On algebras of strongly unbounded representation type, Comment. Math. Helv., this volume.Google Scholar
  3. [3]
    Bautista, R., Gabriel, P., Rotter, A. V. andSalmerón, L.,Representation-finite algebras and multiplicative bases, preprint (1984), 1–109.Google Scholar
  4. [4]
    Bongartz, K. andRiedtmann, Ch.,Algèbres stablement héréditaires, C. R. Acad. Sci. Paris Sér. A-B,288 (1979), 703–706.MATHMathSciNetGoogle Scholar
  5. [5]
    Bongartz, K.,Treue einfach zusammenhängende Algebren I, Comment. Math. Helv.57 (1982), 282–330.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Bongartz, K.,A criterion for finite representation type, Math. Ann.269 (1984), 1–12.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Bretscher, O. andGabriel, P.,The standard form of a representation-finite algebra, Bull. Soc. Math. France,111 (1983), 21–40.MATHMathSciNetGoogle Scholar
  8. [8]
    Bretscher, O., Läser, Ch. andRiedtmann, Ch.,Selfinjective and simply connected algebras, Manuscripta Math.36 (1981), 153–307.CrossRefGoogle Scholar
  9. [9]
    Curtis, C. W. andReiner, I.,Representation theory of finite groups and associative algebras, Interscience publishers (1962).Google Scholar
  10. [10]
    Fischbacher, U.,A new proof of a theorem of Nazarova and Roiter, C.R. Acad. Sc. Paris, t 300, Série I, n0 9, 1985, 259–262.MATHMathSciNetGoogle Scholar
  11. [11]
    Gabriel, P.,The universal cover of a representation finite algebra. Proc. Puebla 1980, Springer Lect. Notes 903, 68–105.Google Scholar
  12. [12]
    Happel, D. andVossieck, D.,Minimal algebras of infinite representation type with preprojective component, Manuscripta Math.42 (1984), 221–243.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Nazarova, L. A. andRotter, A. V.,Categorical matrix problems and the Brauer-Thrall conjecture, preprint Kiev (1972), German version in Mitt. Math. Sem. Giessen115 (1975), 1–153.Google Scholar
  14. [14]
    Riedtmann, Ch.,Selfinjective representation-finite algebras of class D n, Compositio Mathematica49 (1983), 231–282MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • Klaus Bongartz
    • 1
  1. 1.Fachbereich 7 MathematikUniversität GesamthochschuleWuppertal 1Federal Republic of Germany

Personalised recommendations