Commentarii Mathematici Helvetici

, Volume 52, Issue 1, pp 511–518

Extreme values of the Riemann zeta function

  • Hugh L. Montgomery


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Blanksby, P. E. andMontgomery, H. L., Algebraic integers near the unit circle, Acta Arith.18 (1971), 355–369.MATHMathSciNetGoogle Scholar
  2. [2]
    Bohr, H. andLandau, E., Beiträge zur Theorie der Riemannschen Zetafunktion, Math. Ann.74 (1913), 3–30.CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    Cassels, J. W. S., An Introduction to the Geometry of Numbers. Grundl. math. Wiss. 99. Springer-Verlag (Berlin), 1971.Google Scholar
  4. [4]
    Van der Corput, J. G., Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen, Acta Arith.2 (1936), 145–146.MATHGoogle Scholar
  5. [5]
    Ingham, A. E., On the estimation ofN(σ, T), Quart. J. Math. (Oxford)11 (1940), 291–292.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Landau, E., Zur Theorie der Riemannschen Zetafunktion, Vierteljschr. Naturforsch. Ges. Zürich56 (1911), 125–148.Google Scholar
  7. [7]
    Levinson, N., Ω-theorems for the Riemann zeta-function, Acta Arith.20 (1972), 319–332.MathSciNetGoogle Scholar
  8. [8]
    Littlewood, J. E., On the Riemann zeta function, Proc. London Math. Soc. (2)24 (1925), 175–201.MathSciNetGoogle Scholar
  9. [9]
    Montgomery, H. L., Topics in Multiplicative Number Theory. Lecture Notes in Math. 227. Springer-Verlag (Berlin), 1971.MATHGoogle Scholar
  10. [10]
    Ramachandra, K., On the frequency of Titchmarsh's phenomenon for ζ(s), J. London Math. Soc. (2)8 (1974), 683–690.MATHMathSciNetGoogle Scholar
  11. [11]
    Selberg, A., On the remainder in the formula forN(T), the number of zeros of ζ(s) in the strip0<t<T, Avh. Norske Vid. Akad. Oslo I. 1944, no. 1, 27 pp.Google Scholar
  12. [12]
    —, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48, no.5 (1946), 99–155.MathSciNetGoogle Scholar
  13. [13]
    Titchmarsh, E. C., On an inequality satisfied by the zeta-function of Riemann, Proc. London Math. Soc.28 (1928), 70–80.Google Scholar
  14. [14]
    —, The Theory of the Riemann Zeta-Function. Oxford University Press (Oxford), 1951.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • Hugh L. Montgomery
    • 1
    • 2
  1. 1.Institute for Advanced StudyPrinceton
  2. 2.University of MichiganAnn Arbor

Personalised recommendations