manuscripta mathematica

, Volume 75, Issue 1, pp 115–150 | Cite as

Fields: Algebraically closed and others

  • Paulo Ribenboim


Algebraic Closure Real Field Residue Field Finite Extension Algebraic Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Al 1]
    N. L. Alling,Neumann-complete formal power series fields, C. R. Math. Rep. Acad. Sci. Canada9 (1987), 247–252zbMATHMathSciNetGoogle Scholar
  2. [Al 2]
    N. L. Alling,On Euclidean and Pythagorean formal power series fields, C. R. Acad. Sci. Canada12 (1990), to appearGoogle Scholar
  3. [Be 1]
    A. Benhissi, “Les Corps de Séries Formelles Généralisées”, Thesis, Marseille, 1988Google Scholar
  4. [Be 2]
    A. BenhissiSéries formelles généralisées sur un corps pythagoricien, C. R. Math. Rep. Acad. Sci. Canada12 (1990), to appearGoogle Scholar
  5. [El-Ri]
    G. A. Elliott & P. Ribenboim,Fields of generalized power series, Archiv der Math.54 (1990), 365–371zbMATHCrossRefMathSciNetGoogle Scholar
  6. [Gi 1]
    R. Gilmer, “Commutative Semigroup Rings”, Univ. Chicago Press, Chicago, 1984zbMATHGoogle Scholar
  7. [Gi 2]
    R. Gilmer,A note on the quotient field of D[[x]], Proc. Amer. Math. Soc.18 (1967), 1138–1140zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Gr]
    M. P. Griffin,The pythagorean closure of fields, Math. Scand.38 (1976), 177–191zbMATHMathSciNetGoogle Scholar
  9. [Ha]
    H. Haln,Über die nichtarchimedischen Grössensysteme, Sitz. Akad. Wiss. Wien116, (1907), 601–655Google Scholar
  10. [Ha-Wr]
    G. H. Hardy & E. M. Wright, “An Introduction to the Theory of Numbers”, Oxford Univ. Press, 1959Google Scholar
  11. [Kr]
    W. Krull,Allgemeine Bewertungstheorie, J. f. d. reine u. angew. Math.167 (1932), 160–196zbMATHGoogle Scholar
  12. [Ne]
    B. H. Neumann,On ordered division rings, Trans. Amer. Math. Soc.66 (1949), 202–252zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Ra 1]
    F. Rayner,An algebraically closed field, Glasgow Math. J.9 (1968), 146–151zbMATHMathSciNetCrossRefGoogle Scholar
  14. [Ra 2]
    R. Rayner,Algebraically closed fields analogous to fields of Puiseux series, J. London Math. Soc. (2)8 (1974), 504–506zbMATHMathSciNetGoogle Scholar
  15. [Ri 1]
    P. Ribenboim,Generalized power series rings, in “Lattices, Semigroups and Universal Algebra” (edited by J. Almeida, G. Bordalo and P. Dwinger), Plenun, New York (1990), 271–278Google Scholar
  16. [Ri 2]
    P. Ribenboim,Rings of generalized power series: Nilpotent elements, to appear in Abh. Math. Seminar Univ. HamburgGoogle Scholar
  17. [Ri 3]
    P. Ribenboim,Rings of generalized power series, II: Units, zero-divisors and semi-simplicity, to appear in J. AlgebraGoogle Scholar
  18. [Ri 4]
    P. Ribenboim,Noetherian rings of generalized power series, to appear in J. Pure and Appl. AlgebraGoogle Scholar
  19. [Ri 5]
    P. Ribenboim,Special properties of generalized power series, to appearGoogle Scholar
  20. [Ri 6]
    P. Ribenboim,Equivalent forms of Hensel’s lemma, Expo. Math.3 (1985), 3–24zbMATHMathSciNetGoogle Scholar
  21. [Ri 7]
    P. RibenboimPfister’s dimension and the level of fields, Math. scand.35 (1974), 311–318MathSciNetGoogle Scholar
  22. [Ri 8]
    P. Ribenboim, “L’Arithmétique des Corps”, Herman, Paris, 1972zbMATHGoogle Scholar
  23. [Ri 9]
    P. Ribenboim,Some examples of valued fields, to appearGoogle Scholar
  24. [Ri-vdD]
    P. Ribenboim & L. van den Dries,The absolute Galois group of a rational function field in characteristic 0 is a semi-direct product, Can. Math. Bull. 27 (3) (1984), 313–315zbMATHGoogle Scholar
  25. [Riv]
    R. Rivet,Sur le corps des fractions d’un anneau de séries formelles à coefficients dans un anneau de valuation discrète, C. R. Acad. Sci. Paris264 (1967), 1047–1049zbMATHMathSciNetGoogle Scholar
  26. [Ro]
    J. G. Rosenstein, “Linear Orderings”, Academic Press, New York, 1982zbMATHGoogle Scholar
  27. [St 1]
    D. Stefanescu,A method to obtain algebraic elements over K((T)) in positive characteristic, Bull. Math. Soc. Sci. Math. Roumanie 26 (74) (1982), 77–91MathSciNetGoogle Scholar
  28. [St 2]
    D. Stefanescu,On meromorphic formal power series, Bull. Math. Soc. Sci. Math. Roumanie 27 (75) (1983), 170–178MathSciNetGoogle Scholar
  29. [Ucs]
    P. Ucsnay,Wohlgcordnete Untermengen in total geordneten Gruppen, mit einer Anwendung auf Potenzreihenkörper, Math. Ann.160 (1965), 161–170CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsQueen’s UniversityKingstonCANADA

Personalised recommendations