manuscripta mathematica

, Volume 77, Issue 1, pp 201–213

On the computation of a-invariants

  • Winfried Bruns
  • Jürgen Herzog
Article

Abstract

Thea-invariant of a graded Cohen-Macaulay ring is the least degree of a generator of its graded canonical module. We compute thea-invariants of (i) graded algebras with straightening laws on upper semi-modular lattices and (ii) the Stanley-Reisner rings of shellable weighted simplicial complexes. The formulas obtained are applied to rings defined by determinantal and pfaffian ideals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bruns, W. and Vetter, U.: Determinantal rings. Lect. Notes Math.1327, Springer 1988Google Scholar
  2. 2.
    De Concini, C., Eisenbud, D., and Procesi, C.: Hodge algebras. Astérisque91, 1982Google Scholar
  3. 3.
    Eisenbud, D.: Introduction to algebras with straightening laws. In: McDonald, B. R. (Ed.), Ring theory and algebra III, M. Dekker, 1980, pages 243–267Google Scholar
  4. 4.
    Flenner, H.: Quasi-homogene rationale Singularitäten. Arch. Math.36, 35–44 (1981)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gräbe, H.-G.: Streckungsringe. Dissertation B, Erfurt/Mühlhausen, 1988Google Scholar
  6. 6.
    Herzog, J. and Ngo Viet Trung: Gröbner bases and multiplicity of determinantal and pfaffian ideals, to appear in Adv. MathGoogle Scholar
  7. 7.
    Kleppe, H. and Laksov, D.: The algebraic structure and deformation of Pfaffian schemes. J. Algebra64, 167–189 (1980)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Stanley, R. P.: Combinatorics and commutative algebra. Birkhäuser, 1983Google Scholar
  9. 9.
    Yoshino, Y.: The canonical modules of graded rings defined by generic matrices. Nagoya Math. J.81, 105–112 (1981)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Winfried Bruns
    • 1
    • 2
  • Jürgen Herzog
    • 1
    • 2
  1. 1.Standort VechtaUniversität OsnabrückVechta
  2. 2.FB Mathematik u. InformatikUniversität EssenEssen

Personalised recommendations