Advertisement

Commentarii Mathematici Helvetici

, Volume 39, Issue 1, pp 97–110 | Cite as

Common singularities of commuting vector fields on 2-manifolds

  • Elon L. Lima
Article

Keywords

Vector Field Isotropy Group Compact Manifold Genus Zero Simple Closed Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    H. Levine,Homotopie curves on surfaces. Proc. Am. Math. Soc.14 (1963), pp. 986–990.zbMATHCrossRefGoogle Scholar
  2. [2]
    E. Coddington andN. Levinson,Theory of Ordinary Differential Equations. Mc-Graw-Hill, New York (1955).zbMATHGoogle Scholar
  3. [3]
    A. Denjoy,Sur les courbes définies par des équations differentielles à la surface du tore. J. Math. Pures Appl. (9) 11 (1932), pp. 333–345.zbMATHGoogle Scholar
  4. [4]
    E. Lima,Commuting vector fields on S 2. Proc. Am. Math. Soc.15 (1964), pp. 138–141.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    E. Lima,Commuting vector fields on 2-manifolds. Bull. Am. Math. Soc.69 (1963), pp. 366–368.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Peixoto,Structural stability on two-dimensional manifolds. Topology1 (1962), pp. 101–120.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    A. Schwartz,A generalization of the Poincaré-Bendixon theorem for two-dimensional manifolds. (To appear in the Am. Journal Math.).Google Scholar
  8. [8]
    H. Whitney,Regular families of curves. Ann. of Math.34 (1933), pp. 244–270.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1965

Authors and Affiliations

  • Elon L. Lima
    • 1
    • 2
  1. 1.Columbia UniversityNew York
  2. 2.I. M. P. A.Rio de JaneiroBrazil

Personalised recommendations