Commentarii Mathematici Helvetici

, Volume 28, Issue 1, pp 17–86 | Cite as

Quelques propriétés globales des variétés différentiables

  • René Thom
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    J. Adem. The iteration of the Steenrod squares in Algebraic Topology. Proc. Nat. Acad. Sci. U.S.A.,38, 8, p. 720–6.Google Scholar
  2. [2]
    A. L. Blakers.—W. S. Massey. The homotopy groups of a triad. Ann. of Math.53, 1, 1951, p. 161–204.CrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Borel. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann. of Math.,57, 1953, p. 115–207.CrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Borel. La cohomologie modulo 2 de certains espaces homogènes. Comment. Math. Helv.27, 3, 1953, pp. 165–97.MathSciNetGoogle Scholar
  5. [5]
    A. Borel.—J. P. Serre. Groupes de Lie et puissances réduites de Steenrod. Amer. J. of Math.75, 3 1953, pp. 409–48.CrossRefMathSciNetGoogle Scholar
  6. [6]
    N. Bourbaki. Topologie Générale. Chap. IX. p. 75. Act. Sci. Ind. Paris.Google Scholar
  7. [7]
    H. Cartan. Sur les groupes d'Eilenberg-MacLane (à paraître ultérieurement).Google Scholar
  8. [8]
    S. Chern. On the multiplication of the characteristic ring of a spherebundle. Ann. of Math.,49, 1948, p. 2.CrossRefMathSciNetGoogle Scholar
  9. [9]
    B. Eckmann. Coverings and Betti numbers. Bull. Amer. Math. Soc.,55, 1949, p. 95–101.MathSciNetGoogle Scholar
  10. [10]
    C. Ehresmann. Sur les espaces fibrés différentiables. C. R. Acad. Sci. Paris,224, 1947, pp. 1611–12.MathSciNetGoogle Scholar
  11. [11]
    S. Eilenberg. Topological Methods in abstract algebra; cohomology theory of groups. Bull. Amer. Math. Soc.,55, 1949, pp. 3–27.MathSciNetGoogle Scholar
  12. [12]
    S. Eilenberg. Problems in Topology. Ann. of Math.,50, 1949, pp. 246–60.CrossRefMathSciNetGoogle Scholar
  13. [13]
    S. Eilenberg.—S. M. Mac Lane. Cohomology Theory of abelian groups and homotopy groups (I). Proc. Nat. Acad. Sci. U.S.A.,36, 1950, p. 443–7.CrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Eilenberg.—S. Mac Lane. (IV). Proc. Nat. Acad. Sci. U.S.A.,88, 1952, pp. 1340–2.MathSciNetGoogle Scholar
  15. [15]
    W. Hurewicz. Beiträge zur Topologie der Deformationen. Nederl. Akad. Wetensch. Proc. Ser. A, 1935–6.Google Scholar
  16. [16]
    A. P. Morse. The behavior of a function on its critical set. Ann. of Math.,40, 1939, 1, pp. 62–70.CrossRefMathSciNetGoogle Scholar
  17. [17]
    L. Pontrjagin. Doklady Akad. Nauk S.S.S.R.,34, 1942, pp. 35–7.MathSciNetGoogle Scholar
  18. [18]
    L. Pontrjagin, Characteristic cycles of differentiable Manifolds. Mat. Sbornik,21 (63), 1947, pp. 233–84.MathSciNetGoogle Scholar
  19. [19]
    B. A. Rokhlin. Une variété de dimension 3 est le bord d'une variété de dimension 4 (Russe). Doklady Akad. Nauk S.S.S.R.,81, 1951, p. 355.Google Scholar
  20. [20]
    B. A. Rokhlin. Nouveaux résultats en théorie des variétés de dimension 4 (Russe). Doklady Akad. Nauk. S.S.S.R.,84, no 2, 1952, pp. 221–4.Google Scholar
  21. [21]
    H. Seifert, Algebraische Approximation von Mannigfaltigkeiten. Math. Z.,41, 1936, pp. 1–17.CrossRefMathSciNetGoogle Scholar
  22. [22]
    J. P. Serre. Groupes d'homotopie et classes de groupes abéliens. Ann. of Math.58, 2, 1953, pp. 258–294.CrossRefMathSciNetGoogle Scholar
  23. [23]
    J. P. Serre. Cohomologie modulo 2 des complexes d'Eilenberg-Mac Lane. Comment Math. Helv.27, 3, 1953, pp. 198–231.MathSciNetGoogle Scholar
  24. [24]
    J. P. Serre. Homologie singulière des espaces fibrés. Ann. of Math.,54, 3, pp. 425–505.Google Scholar
  25. [25]
    N. E. Steenrod. Cyclic reduced Powers of cohomology classes. Proc. Nat. Acad. Sci. U.S.A.39, 3, 1953, pp. 213–223.CrossRefMathSciNetGoogle Scholar
  26. [26]
    N. E. Steenrod.—J. H. C. Whitehead. Vector fields on then-sphere. Proc. Nat. Acad. Sci. U.S.A.,37, 1, p. 58–63, 1951.CrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Thom. Espaces fibrés en sphères et carrés de Steenrod. Ann. Sci. Ecole Norm. Sup.,69 (3), 1952, pp. 109–81.MathSciNetGoogle Scholar
  28. [28]
    R. Thom. Sous-variétés et classes d'homologie des variétés différentiables. C. R. Acad. Sci. Paris,236, pp. 453–4 et 573–5. Sur un problème de Steenrod. Ibid. C. R. Acad. Sci. Paris,236, p. 1128–30. Variétés différentiables cobordantes. Ibid. C. R. Acad. Sci. Paris,236, pp. 1733–5.Google Scholar
  29. [29]
    J. H. C. Whitehead. Combinatorial Homotopy. Bull. Amer. Math. Soc.55, p. 213–45 et p. 453–96.Google Scholar
  30. [30]
    H. Whitney. A function not constant on a connected set of critical points. Duke Math. J. I. no 4, 1935, p. 514–17.CrossRefMathSciNetGoogle Scholar
  31. [31]
    H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc.36, no 1, 1934, p. 63–89.CrossRefMathSciNetGoogle Scholar
  32. [32]
    H. Whitney. Topology of differentiable Manifolds. Michigan Lectures, p. 101–41.Google Scholar
  33. [33]
    Wu W. T. Classes caractéristiques eti-carrés d'une variété. C. R. Acad. Sci. Paris,230, 1950, p. 508–9.MathSciNetGoogle Scholar
  34. [34]
    Wu W. T. Lesi-carrés dans une variété grassmannienne. C. R. Acad. Sci., Paris,230, 1950, p. 918.MathSciNetGoogle Scholar
  35. [35]
    Wu W. T. Sur les puissances de Steenrod. Colloque de Topologie de Strasbourg, Juillet 1951. (Miméographié).Google Scholar

Copyright information

© Birkhäuser Verlag 1954

Authors and Affiliations

  • René Thom
    • 1
  1. 1.Strasbourg

Personalised recommendations