Commentarii Mathematici Helvetici

, Volume 63, Issue 1, pp 498–526 | Cite as

Representations of bipartite completed posets

  • L. A. Nazarova
  • A. V. Roiter
Article
  • 22 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Nazarova L. A., Roiter A. V.,Representations of partially ordered sets, Zap. nauč. sem. LOMI 28(1972), p. 5–31 (English transl. in J. Sov. Math. 3(1975), p. 585–606).MathSciNetGoogle Scholar
  2. [2]
    Kleiner M. M.,Partially ordered sets of finite type, loc. cit., p. 32–42 (English; p. 607–615).MathSciNetGoogle Scholar
  3. [3]
    Kleiner M. M.,On the faithful representations of partially ordered sets of finite type, loc. cit., p. 42–60 (English p. 616–628).MathSciNetGoogle Scholar
  4. [4]
    Gabriel P.,Représentations indécomposables des ensembles ordonnés Sém. Dubreil 1972–73, Paris, exposé 13, p. 1–10.Google Scholar
  5. [5]
    Nazarova L. A., Roiter A. V.,Categorical matrix problems and the conjecture of Brauer-Thrall, Preprint 73.9 (1973), p. 1–100, Mathematics Institute of the Ukrain. Ac. of Sc., Kiev (German translation in Mitteil. Math. Sem. Giessen, 115(1975), p. 1–154).Google Scholar
  6. [6]
    Nazarova L. A. Roiter A. V.,Representations and forms of weakly completed partially ordered sets, in Linear algebra and representation theory, (1983), p. 19–54, Math. Inst., Ukr. Ac. Sc., Kiev.Google Scholar
  7. [7]
    Nazarova L. A., Zavadski A. G.,Partially ordered sets of finite growth and their representations, Preprint 81.27 (1981), p. 3–44, Math. Inst. Ukr. Ac. Sc., Kiev.Google Scholar
  8. [8]
    Zavadski A. G., Nazarova L. A.,Partially ordered sets of tame type, in Matrix problems, Preprint (1977), p. 122–144, Math. Inst. Ukr. Ac. Sc., Kiev.Google Scholar
  9. [9]
    Ringel C. M.,Tame algebras and quadratic forms, Springer Lecture Notes 1099(1984) 376 p.Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • L. A. Nazarova
    • 1
  • A. V. Roiter
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKievUSSR

Personalised recommendations