Commentarii Mathematici Helvetici

, Volume 63, Issue 1, pp 259–274 | Cite as

The geometry and spectrum of the one holed torus

  • P. Buser
  • K. -D. Semmler
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beardon, A. F., The Geometry of Discrete Groups, Springer-Verlag New York etc. (1983).MATHGoogle Scholar
  2. [2]
    Brooks, R., Isospectral surfaces of small genus,Nagoya Math. J. Google Scholar
  3. [3]
    Buser, P., Isospectral Riemann surfaces,Ann. Inst. Fourier, Grenoble 36, 2 (1986), 167–192.MathSciNetGoogle Scholar
  4. [4]
    Fathi, A., Laudenbach, F., etPoénaru, V., Travaux de Thurston sur les surfaces,astérisque 66–67 (1979).Google Scholar
  5. [5]
    Gel’fand, I. M., Automorphic functions and the theory of representations,Proc. Internat. Congress Math., (Stockholm, 1962), 74–85.Google Scholar
  6. [6]
    Haas, A., Length spectra as moduli for hyperbolic surfaces,Duke Math. J.,52, (1985), 923–934.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Sunada, T., Riemannian coverings and isospectral manifolds,Annals of Math.,121 (1985), 169–186.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Vignéras, M. F., Variétés riemanniennes isospectrales et non isométriques,Ann. of Math.,112 (1980), 21–32.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Wolpert, S., The length spectra as moduli for compact Riemann surfaces,Ann. of Math.,109 (1979), 323–351.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • P. Buser
    • 1
  • K. -D. Semmler
    • 1
  1. 1.EPFLLausanne-EcublensSwitzerland

Personalised recommendations