Commentarii Mathematici Helvetici

, Volume 66, Issue 1, pp 263–278 | Cite as

Minimal surfaces bounded by convex curves in parallel planes

  • William H. MeeksIII
  • Brian White
Article
  • 61 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Anderson. Curvatuve estimates for minimal surfaces in 3-manifolds.Ann. Scient. Éc. Norm. Sup. 18, 89–105 (1985).Google Scholar
  2. [2]
    J. L. Barbosa andM. Do Carmo On the size of a stable minimal surface in ℝ3.American Journal of Mathematics, 19(8), 515–528 (1976).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Callahan, D. Hoffman andW. H. Meeks III Embedded minimal surfaces with an infinite number of ends.Inventiones Math., 96, 459–505 (1989).MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Callahan, D. Hoffman, andW. H. Meeks III. The structure of singly-periodic minimal surface.Inventiones Math., 99, 455–481 (1990).MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    I, Chavel,Eigenvalues in Riemannian Geometry. Academic Press, 1984.Google Scholar
  6. [6]
    A. Enneper Die cyklischen flachen.Z. Math. und Phys., 14, 393–421 (1869).Google Scholar
  7. [7]
    S. Hildebrandt Boundary behavior of minimal surfaces.Archive Rational Mech. Anal., 35, 47–81 (1969).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    D. Hoffman andW. H. Meeks III Minimal surfaces based on the catenoid. Amer. Math. Monthly, special Geometry Issue, 97(8), 702–730 (1990).MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. B. Lawson, Jr.,Lectures on Minimal Submanifolds. Publish or Perish Press, Berkeley, 1971.Google Scholar
  10. [10]
    W. H. Meeks III.Lectures on Plateau's Problem. Instituto de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, Brazil, 1978.Google Scholar
  11. [11]
    W. H. Meeks III. Uniqueness theorems for minimal surfaces.Illinois Journal of Math., 25, 318–336 (1981).MathSciNetMATHGoogle Scholar
  12. [2]
    W. H. Meeks III andB. White. The space of minimal annuli bounded by an extremal pair of planar curves. Preprint.Google Scholar
  13. [13]
    W. H. Meeks III andS. T. Yau The classical Plateau problem and the topology of three-dimensional manifolds.Topology, 21, 409–422 (1982).MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    W. H. Meeks III andS. T. Yau The existence of embedded minimal surfaces and the problem of uniqueness.Math. Z., 179, 151–168 (1982).MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    B. Riemann.Ouevres Mathématiques de Riemann, Gauthiers-Villars, Paris, 1898.Google Scholar
  16. [16]
    R. Schoen. Uniqueness, symmetry, and embeddedness of minimal surfaces.Journal of Differential Geometry, 18, 791–809 (1983).MathSciNetMATHGoogle Scholar
  17. [17]
    M. Shiffman On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes.Annals of Math., 63, 77–90 (1956).MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Smale. An infinite dimensional version of Sard's theorem.Americal Journal of Math., 87, 861–866, 1965.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Struwe. A Morse theory for annulus-type minimal surfaces.Journal für die reine und angewandte Mathematik, 368, 1–27 (1986).MathSciNetMATHGoogle Scholar
  20. [20]
    F. Tomi andA. J. Tromba Extreme curves bound an embedded minimal surface of disk type.Math. Z. 158, 137–145 (1978).MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    B. White Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals.Inventiones Math., 88(2), 243–256 (1987).MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    B. White. New applications of mapping degrees to minimal surface theory.Journal of Differential Geometry, 29, 143–162 (1989).MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • William H. MeeksIII
    • 1
    • 2
  • Brian White
    • 1
    • 2
  1. 1.Mathematics DepartmentUniversity of MassachusettsAmherstUSA
  2. 2.Mathematics DepartmentStanford UniversityStanfordUSA

Personalised recommendations