Advertisement

Commentarii Mathematici Helvetici

, Volume 65, Issue 1, pp 104–113 | Cite as

Representation of links by braids: A new algorithm

  • Pierre Vogel
Article

Keywords

Free Edge Mapping Class Group Elementary Operation Elementary Transformation Initial Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alexander, J. W.,A lemma on a system of knotted curves. Proc. Nat. Acad. Sci. USA.9 (1923), 93–95.CrossRefGoogle Scholar
  2. [2]
    Birman, J. S.,Braids, links and mapping class group. Annals of Math. Studies no 82 Princeton Univ. Press, N.J. (1976).Google Scholar
  3. [3]
    Morton, H.,Threading knot diagrams. Math. Proc. Camb. Phil. Soc.99(1986), 247–260.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Yamada, S.,The minimal number of Seifert circles equals the braid index of a link. Invent. Math.89 (1987), 347–356.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Pierre Vogel
    • 1
  1. 1.Université de Nantes, Département de MathématiquesNantes Cedex 03France

Personalised recommendations