Commentarii Mathematici Helvetici

, Volume 65, Issue 1, pp 58–78 | Cite as

Casson invariant of links of singularities

  • Walter Neumann
  • Jonathan Wahl
Article
  • 44 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]M. Atiyah, New invariants of 3- and 4-manifolds,The Mathematical Heritage of Herman Weyl, Proc. Symp. Pure Math.48 (1988), 285–300.MathSciNetCrossRefGoogle Scholar
  2. [B]E. Brieskorn,Beispiele zur Differenzialtopologie von Singularitäten, Invent. Math.2 (1966), 1–14.MathSciNetCrossRefMATHGoogle Scholar
  3. [B-L]S. Boyer andD. Lines, Surgery formulae for Casson's invariant and extensions to homology lens spaces, Rapport de recherchen o 66, Université du Québec à Montréal, 2 novembre 1988.Google Scholar
  4. [B-N]S. Boyer andA. Nicas,Varieties of group representations and Casson's invariant for rational homology 3-spheres, Trans. Amer. Math. Soc. (to appear).Google Scholar
  5. [E-N]D. Eisenbud andW. Neumann,Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Studies110 (Princeton U. Press, 1985).Google Scholar
  6. [F-S]R. Fintushel andR. J. Stern,Instanton homology of Seifert fibered homology 3-spheres, (Preprint 1988).Google Scholar
  7. [F-M-S]S. Fukuhara, Y. Matsumoto andK. Sakamoto,Casson's invariant of Seifert homology 3-spheres, PreprintGoogle Scholar
  8. [G]L. Greenberg, Homomorphisms of triangle groups into PSL(2, ℂ),Riemannian surfaces and related topics: Proc. of the 1978 Stony Brook Conference, Annals of Math. Studies97 (Princeton University Press 1981), 167–181.Google Scholar
  9. [H1]F. Hirzebruch,The signature theorem: reminiscences and recreations, Prospects in Mathematics, Ann. of Math. Studies70 (Princeton U. Press, 1971), 3–31.Google Scholar
  10. [H2]F. Hirzebruch, Pontryagin classes of rational homology manifolds and the signature of some affine hypersurfaces,Proceedings of the Liverpool Singularities Symposium II (ed. C. T. C. Wall), Lecture Notes in Math.209 (Springer Verlag 1971), 207–212.Google Scholar
  11. [H-Z]F. Hirzebruch andD. Zagier,The Atiyah Singer Theorem and Elementary Number Theory, Lecture Series3 (Publish or Perish Inc., Boston, Berkeley, 1974).MATHGoogle Scholar
  12. [K-N]L. Kauffman andW. D. Neumann,Product of knots, branched fibrations, and sums of singularities, Topology16 (1977), 369–393.MathSciNetCrossRefMATHGoogle Scholar
  13. [K]C. Kearton,The Milnor signatures of compound knots, Proc. Amer. Math. Soc.76 (1979), 157–160.MathSciNetCrossRefMATHGoogle Scholar
  14. [L]R. A. Litherland,Signatures of iterated torus knots, Topology of Low Dimensional Manifolds, Proceedings, Sussex 1974, Lecture Notes in Math.722 (Springer Verlag 1974, 71–84.Google Scholar
  15. [L-W]E. Looijenga andJ. Wahl,Quadratic functions and smoothing surface singularities, Topology25 (1986), 261–291.MathSciNetCrossRefMATHGoogle Scholar
  16. [M]J. Milnor,On isometries of inner product spaces, Invent. Math.8 (1969), 83–97.MathSciNetCrossRefMATHGoogle Scholar
  17. [Mo]L. J. Mordell,Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc.15 (1951), 41–46.MathSciNetMATHGoogle Scholar
  18. [N1]W. D. Neumann,A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves. Trans. Amer. Math. Soc.268 (1981), 299–344.MathSciNetCrossRefMATHGoogle Scholar
  19. [N2]W. D. Neumann,Abelian covers of quasihomogeneous surface singularities, Singularities, Arcata 1981, Proc. Symp. Pure Math.40 (Amer. Math. Soc. 1983), 233–243.CrossRefGoogle Scholar
  20. [N-R]W. D. Neumann andF. Raymond,Seifert manifolds, plumbing, μ-invariant, and orientation reversing maps, Algebraic and Geometric Topology, Lecture Notes in Math.664 (Springer Verlag 1978), 162–194.Google Scholar
  21. [Sh]Y. Shinohara,On the signature of knots and links, Trans. Amer. Math. Soc.156 (1971), 273–285.MathSciNetCrossRefMATHGoogle Scholar
  22. [Si]L. Siebenmann,On vanishing of the Rohlin invariant and non-finitely amphicheiral homology 3-spheres, Topology Symposium Siegen 1979 (Koschorke and Neumann, eds.), Lecture Notes in Math.788 (Springer Verlag 1979).Google Scholar
  23. [W]K. Walker,An extension of Casson's invariant, Thesis, University of California at Berkeley (in preparation; preliminary draft Dec. 13, 1988)Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Walter Neumann
    • 1
    • 2
  • Jonathan Wahl
    • 1
    • 2
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Department of MathematicsUniversity of North CarolinaChapel HillUSA

Personalised recommendations