Commentarii Mathematici Helvetici

, Volume 67, Issue 1, pp 252–286 | Cite as

On the trigonometry of symmetric spaces

  • Enrico Leuzinger
Article
  • 34 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Asl]H. Aslaksen, Laws of trigonometry onSU(3),Trans. Amer. Math. Soc. 317 (1990), 127–142.CrossRefMathSciNetGoogle Scholar
  2. [Bou]N. Bourbaki,Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Paris 1981.Google Scholar
  3. [Bre]U. Brehm, The Shape Invariant of Triangles and Trigonometry in Two-Point Homogeneous Spaces,Geometriae Dedicata 33 (1990), 59–76.CrossRefMathSciNetGoogle Scholar
  4. [Ca1]É. Cartan Sur une class remarquable d'espaces de Riemann,Bull. Soc. Math. de France 54 (1926), 214–264;55 (1927), 114–134.MathSciNetGoogle Scholar
  5. [Ca2]É. Cartan, Sur certains formes riemanniennes remarquables des géométries à groupe fondamental simple,Ann. Éc. Norm. 44 (1927), 345–367.MathSciNetGoogle Scholar
  6. [Ca3]É. Cartan, La géométrie des groupes simples,Annali di Math. 4 (1927), 209–256.CrossRefMathSciNetGoogle Scholar
  7. [Che]C. Chevalley, Invariants of finite groups generated by reflections,Amer. J. Math. 77 (1955), 778–782.CrossRefMathSciNetGoogle Scholar
  8. [GSt]V. Guillemin andS. Sternberg,Sympletic Techniques in Physics, Cambridge 1984.Google Scholar
  9. [Hel]S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces, New York 1978.Google Scholar
  10. [He2]S. Helgason,Groups and Geometric Analysis, New York 1984.Google Scholar
  11. [Hsi]W.-Y. Hsiang, On the Laws of Trigonometrics of Two-Point Homogeneous Spaces,Ann. Global Anal. Geom., 7 (1989), 29–45.CrossRefMathSciNetGoogle Scholar
  12. [IH1]H.-C. Im Hof, Die Geometrie der Weylkammern in symmetrischen Räumen vom nichtkompakten Typ, Habilitationsschrift, Bonn 1979.Google Scholar
  13. [IH2]H.-C. Im Hof, An Anosov action on the bundle of Weyl chambers,Ergod. Th. & Dynam. Sys. 5 (1985), 587–593.MathSciNetGoogle Scholar
  14. [Leu]E. Leuzinger, On the Trigonometry of Symmetric Spaces, dissertation, ETH Zürich 1990.Google Scholar
  15. [Roz]B. A. Rozenfeld, On the theory of symmetric spaces of rank one,Mat. Sb. NS 41(83) (1957), 373–380 (Russian).MathSciNetGoogle Scholar
  16. [Sat]I. Satake, On representations and compactifications of symmetric spaces,Ann. of Math. 71 (1960), 77–110.CrossRefMathSciNetGoogle Scholar
  17. [Spr]T. A. Springer, Invariant Theory,Lecture Notes in Mathematics 585, Berlin 1977.Google Scholar
  18. [Ste]R. Steinberg, Invariants of finite reflection groups,Canad. J. Math. 12 (1960), 616–618.MathSciNetGoogle Scholar
  19. [Warx]G. Warner,Harmonic Analysis on Semi-Simple Lie Groups I Berlin 1972Google Scholar
  20. [Wey]H. Weyl,The Classical Groups, their Invariants and Representations, Second Edition, Princeton 1946.Google Scholar
  21. [Wol]J. A. Wolf,Spaces of Constant Curvature, Fifth Edition, Wilmington 1984.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Enrico Leuzinger
    • 1
  1. 1.Mathematisches Institut der UniversitätBonn

Personalised recommendations