Commentarii Mathematici Helvetici

, Volume 67, Issue 1, pp 167–181 | Cite as

Une inégalité du type “Reilly” pour les sous-variétés de l'espace hyperbolique

  • A. El Soufi
  • S. Ilias
Article
  • 99 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Aubin T.,Nonlinear Analysis on manifolds, Monge-Ampère equation, Grundlehren Math. Wiss., Vol. 252 (1982).Google Scholar
  2. [2]
    Barbosa L., Do Carmo M.,Stability of hypersurfaces with constant mean curvature, Math. Z.,185, 339–353 (1984).CrossRefMathSciNetGoogle Scholar
  3. [3]
    Barbosa L., Do Carmo M., Eschenburg J.,Stability of hypersurfaces of constant mean curvature in riemannian manifolds, Math. Z.197, 123–138 (1988).CrossRefMathSciNetGoogle Scholar
  4. [4]
    Chen B. Y.,Total Mean Curvature and Submanifolds of Finite Type. Series in Pure Math. Vol. 1, World Scientific (1984).Google Scholar
  5. [5]
    El Soufi A., Ilias S.,Sur l'existence des hypersurfaces minimales stables ou d'indice 1, et des hypersurfaces à courbure moyenne constante stables. Prépublication de l'Institut Fourier (Grenoble), no94, (1987).Google Scholar
  6. [6]
    El Soufi A., Ilias S.,Immersions minimales, première valeur propre du Laplacien et volume conforme, Math. Ann. 275, 257–267 (1986).CrossRefMathSciNetGoogle Scholar
  7. [7]
    El Soufi A., Ilias S.,Opérateurs de Schödinger sur une variété riemannienne et volume conforme, Prépublication de l'Institut Fourier (Grenoble), no 83, (1987).Google Scholar
  8. [8]
    Heintze E., Extrinsic upper bound for λ1, Math. Ann.280, 389–402 (1988).CrossRefMathSciNetGoogle Scholar
  9. [9]
    Langer J., Singer T. A.,The total squared curvature of closed curves, J. Diff. Geo.20, 1–22 (1984).MathSciNetGoogle Scholar
  10. [10]
    Lawson H. B.,Lectures on minimal submanifolds, Lecture series 9, Berkeley: Publish or perish (1980).MATHGoogle Scholar
  11. [11]
    Li P., Yau S. T.,A new conformal invariant and its application etc, Invent. Math.69, 269–291 (1982).CrossRefMathSciNetGoogle Scholar
  12. [12]
    Montiel S., Ros A.,Minimal immersions of surfaces by the first eigen functions and conformal area, Invent. Math.83, 153–166 (1986);CrossRefMathSciNetGoogle Scholar
  13. [13]
    Reilly R. C.,On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv.52, 525–533 (1977).MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • A. El Soufi
    • 1
  • S. Ilias
    • 1
  1. 1.Départment de MathématiquesUniversité de TOURS Faculté des SciencesTOURS

Personalised recommendations