Commentarii Mathematici Helvetici

, Volume 71, Issue 1, pp 98–121 | Cite as

Jacquet functors and unrefined minimal K-types

  • Allen Moy
  • Gopal Prasad
Article
  • 188 Downloads

Abstract

The notion of an unrefined minimal K-type is extended to an arbitrary reductive group over a non archimedean local field. This allows one to define the depth of a representation. The relationship between unrefined minimal K-types and the functors of Jacquet is determined. Analogues of fundamental results of Borel are proved for representations of depth zero.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BZ]J. Bernstein andA. Zelevinsky,Representations of the group GL(n,F) where F is a non-archimedean local field, Russian Math. Surveys 31:3 (1976), 1–68.CrossRefMATHGoogle Scholar
  2. [B1]A. Borel,Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math.35 (1976), 233–259.CrossRefMathSciNetMATHGoogle Scholar
  3. [B2]A. Borel,Linear algebraic groups, Graduate Texts in Mathematics, Springer-Verlag, 1991.Google Scholar
  4. [BT1]F. Bruhat andJ. Tits,Groupes réductifs sur un corps local I, Publ. Math. I.H.E.S.41 (1972).Google Scholar
  5. [BT2]F. Bruhat andJ. Tits,Groupes réductifs sur un corps local II, Publ. Math. I.H.E.S.60 (1984).Google Scholar
  6. [BK1]C. Bushnell andP. Kutzko,The admissible dual of GL(N) via compact open subgroups, Princeton University Press, 1993.Google Scholar
  7. [BK2]C. Bushnell andP. Kutzko,Smooth representations of reductive p-adic groups (preprint).Google Scholar
  8. [Car]P. Cartier,Representations of p-adic groups: A survey, Proc. of A.M.S. Symposia in Pure Math. XXXIII (part 1), 111–155.Google Scholar
  9. [Cas]W. Casselman,Introduction to the theory of admissible representations of p-adic reductive groups (preprint).Google Scholar
  10. [HC]Harish-Chandra,Eisenstein series over finite fields, Collected Papers, Springer-Verlag, New York, 1984.Google Scholar
  11. [HL]R. Howlett andG. Lehrer,On Harish-Chandra induction and restriction for modules of Levi subgroups, Jour. of Algebra165 (1994), 172–183.CrossRefMathSciNetMATHGoogle Scholar
  12. [K]G. Kempf,Instability in invariant theory, Ann. Math.108 (1978), 299–316.CrossRefMathSciNetGoogle Scholar
  13. [Mr1]L. Morris,P-cuspidal representations of level one, Proc. LMS (3rd series)58 (1989), 550–558.MATHGoogle Scholar
  14. [Mr2]L. Morris,Tamely ramified intertwining algebras, Invent Math.114 (1993), 1–54.CrossRefMathSciNetMATHGoogle Scholar
  15. [MP]A. Moy andG. Prasad,Unrefined minimal K-types for p-adic groups, Invent. Math.116 (1994), 393–408.CrossRefMathSciNetMATHGoogle Scholar
  16. [R]G. Rousseau,Immeubles spheriques et theorie des invariants, C. R. Acad. Sci. (Paris)286 (1978), A247-A250.MathSciNetGoogle Scholar
  17. [Sh]T. Shintani,On certain square integrable unitary representations of some p-adic linear groups, Jour. Math. Soc. Japan20 (1968), 522–565.MathSciNetCrossRefMATHGoogle Scholar
  18. [Si]A. Silberger,Introduction to harmonic analysis on reductive p-adic groups, Princeton University Press, Princeton, 1979.MATHGoogle Scholar
  19. [T]J. Tits,Reductive groups over local fields, Proc. of A.M.S. Symposia in Pure Math. XXXIII (part 1), 29–69.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • Allen Moy
    • 1
  • Gopal Prasad
    • 1
  1. 1.Department of MathematicsUniversity of MichiganMIAnn ArborUSA

Personalised recommendations