Commentarii Mathematici Helvetici

, Volume 59, Issue 1, pp 565–591 | Cite as

Cyclic homology and the Lie algebra homology of matrices

  • Jean-Louis Loday
  • Daniel Quillen


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Bloch,The dilogarithm and extensions of Lie algebras, in AlgebraicK-theory, Evanston 1980, Springer Lecture Note,854 (1981), 1–23.Google Scholar
  2. [2]
    H. Cartan andS. Eilenberg,Homological Algebra, Princeton University Press, 1956.Google Scholar
  3. [3]
    A. Connes,Non commutative differential geometry, Ch. II De Rham homology and non commutative algebra, preprint I.H.E.S. (1983).Google Scholar
  4. [4]
    —,Cohomologie cyclique et foncteurs Extn, Comptes Rendus Acad. Sc. Paris296 (1983), 953–958.MathSciNetMATHGoogle Scholar
  5. [5]
    G. Hochschild, B. Kostant andA. Rosenberg,Differential forms on regular affine algebras, Trans. A.M.S.102 (1962), 383–408.CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    W.-c. Hsiang andR. E. Staffeldt,A model for computing rational algebraic K-theory of simply connected spaces, Invent. Math.68 (1982), 227–239.CrossRefMathSciNetMATHGoogle Scholar
  7. [7]
    C. Kassel etJ.-L. Loday,Extensions centrales d'algèbres de Lie, Ann. Inst. Fourier32 (1982), 119–142.MathSciNetMATHGoogle Scholar
  8. [8]
    J.-L. Koszul,Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France78 (1950), 65–127.MathSciNetMATHGoogle Scholar
  9. [9]
    J.-L. Loday etD. Quillen,Homologie cyclique et homologie de l'algèbre de Lie des matrices, Comptes Rendus Acad. Sc. Paris,296 (1983), 295–297.MathSciNetMATHGoogle Scholar
  10. [10]
    D. Quillen,Cohomology of groups, Actes Congrès International Math. 1970, t. 2, 47–51.Google Scholar
  11. [11]
    C. Soulé,Opérations en K-théorie algébrique, prépublication Paris VII, 1983.Google Scholar
  12. [12]
    B. L. Tsygan,Homology of matrix algebras over rings and the Hochschild homology (in Russian), Uspekhi Mat. Nauk, tom38 (1983), 217–218.MathSciNetMATHGoogle Scholar
  13. [13]
    H. Weyl,The classical groups, Princeton University Press, 1946.Google Scholar
  14. [14]
    R. K. Dennis andK. Igusa,Hochschild homology and the second obstruction for pseudo-isotopy, Springer Lecture Notes in Math.966 (1982), 7–58.MathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1984

Authors and Affiliations

  • Jean-Louis Loday
    • 1
    • 2
  • Daniel Quillen
    • 1
    • 2
  1. 1.Institut de Recherche Mathématique AvancéeUniversité L. PasteurStrasbourgFrance
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations