Advertisement

Commentarii Mathematici Helvetici

, Volume 56, Issue 1, pp 524–557 | Cite as

Double collisions for a classical particle system with nongravitational interactions

  • Richard McGehee
Article

Keywords

Angular Momentum Vector Field Unstable Manifold Stable Manifold Real Analytic Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Conley, C.,Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, 1978.zbMATHGoogle Scholar
  2. [2]
    Conley, C. andEaston, R.,Isolated invariant sets and isolating blocks,Trans. Amer. Math. Soc. 158 (1971), 35–61.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Devaney, R.,Collision orbits in the anisotropic Kepler problem, Inventiones Math.45 (1978), 221–251.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Easton, R.,Regularization of vector fields by surgery, J. Differential Equations10 (1971), 92–99.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Fenichel, N.,Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J.21 (1971), 193–226.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Levi-Civita, T.,Sur la régularisation du problème des trois corps, Acta Math.42 (1920), 99–144.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    McGehee, R.,Triple collision in Newtonian gravitational systems, Dynamical Systems, Theory and Applications, J. Moser, ed., Lecture Notes in Physics, Springer-Verlag, 1975, 550–572.Google Scholar
  8. [8]
    McGehee, R.,Singularities in classical celestial mechanics, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, 827–834.Google Scholar
  9. [9]
    Moser, J.,Three integrable Hamiltonian systems connected with isospectral deformation, Adv. in Math.16 (1975), 197–220.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Siegel, C. L. andMoser, J.,Lectures on Celestial Mechanics, Springer-Verlag, 1971.Google Scholar
  11. [11]
    Siegel, C. L.,Der Dreierstoss, Ann. Math.42 (1941), 127–168.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Sundman, K.,Recherches sur le problème des trois corps, Acta Societatis Scientierum Fennicae34 (1907).Google Scholar
  13. [13]
    Whittaker, E. T.,A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Dover, N.Y., 1944.zbMATHGoogle Scholar
  14. [14]
    Wilson, F. W., Jr. andYorke, J.,Lyapunov functions and isolating blocks, J. Differential Equations13 (1973), 106–123.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Richard McGehee
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations