Advertisement

Commentarii Mathematici Helvetici

, Volume 53, Issue 1, pp 174–227 | Cite as

Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique

  • Augustin Banyaga
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Arnold V. I.,One dimensional cohomology of the Lie algebra of non divergent vector fields and rotation number of dynamics systems, Funct. Analis. Priloz. Vol 13 No. 4, Oct, déc. 1969 pp 77–78.Google Scholar
  2. [2]
    Banyaga, A.,Sur le groupe des difféomorphismes symplectiques. Springer Lecture Notes No 484, pp 50–56.Google Scholar
  3. [3]
    Banyaga, A.,On the group of diffeomorphisms preserving an exact symplectic form, A paraitre dans les comptes rendus du C.I.M.E., Août 1976, Varenna, Italie.Google Scholar
  4. [4]
    Banyaga, A.,Sur la structure du groupe des difféomorphismes, A paraitre.Google Scholar
  5. [5]
    Boothby, W. M.,Transitivity of automorphisms of certain geometric structures, Trans. Amer. Math. Soc.137 (1969), 93–100.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Calabi, E.,On the group of automorphisms of a symplectic manifold. Problems in Analysis (symposium in honour of S. Bochner), Princeton University Press (1970) 1–26.Google Scholar
  7. [7]
    Epstein, D. B. A.,The simplicity of certain groups of homeomorphisms, Composition Mathematica Vol. 22 Fasc. 2 (1970), 165–173.zbMATHGoogle Scholar
  8. [8]
    Herman, M. R.,Sur le groupe des difféomorphismes du tore, Ann. Inst. Fourier,23-2 (1974) 75–86.Google Scholar
  9. [9]
    Kobayashi, S. etNomizu, K.,Foundation of differential geometry, Tome I, Interscience Publishers, 1963.Google Scholar
  10. [10]
    Martinet, J.,Sur les singularités des formes différentielles. Ann. Inst. Fourier,20 (1970) 95–178.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Mather, J. N.,Commutators of diffeomorphisms I et II, Comments. Math. Helv.49 (1974), 512–528 et50 (1975) 33–40.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Moser, J.,On the volume-element on manifolds, Trans. Amer. Math. Soc.120 (1965), 280–296.CrossRefGoogle Scholar
  13. [13]
    Rousseau, G.,Difféomorphismes d'une variété symplectique non compacte, A paraitre.Google Scholar
  14. [14]
    Schwartz, L.,Séminaire 1953–1954: Produits tensoriels d'espaces vectoriels topologiques, Faculté des Sciences, Paris, (1954).Google Scholar
  15. [15]
    Sergeraert, F.,Un théorème des fonctions implicites sur certains espaces de Fréchet et quelques applications, Ann. Scient. Ec. Nor. Sup. 4 ème série,5 (1972) 599–660.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Thurston, W.,On the structure of volume preserving diffeomorphisms, A paraitre.Google Scholar
  17. [17]
    —,Foliations and group of diffeomorphisms, Bull. Amer. Math. Soc. V.80 (1974), 304–307.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Treves, F.,Topological vector space, distributions and kernels, Academic Press, New York, 1967.Google Scholar
  19. [19]
    Weil, A.,Variétés kählériennes, Hermann, Paris, 1958.zbMATHGoogle Scholar
  20. [20]
    Weinstein, A.,Symplectic manifolds and their lagrangian submanifolds, Advances in Math.6 (1971), 329–345.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Augustin Banyaga
    • 1
  1. 1.Section de MathématiquesUniversité de GenèveGenève 24SUISSE

Personalised recommendations