Commentarii Mathematici Helvetici

, Volume 53, Issue 1, pp 113–134 | Cite as

Manifolds with a given homology and fundamental group

  • Jean-Claude Hausmann
Article
  • 43 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-E]Bieri R., Eckmann B.Finiteness properties of duality groups. Comment. Math. Helv.49 (1974) 74–83.MathSciNetMATHGoogle Scholar
  2. [B]Browder W.,Poincaré Spaces, Their normal fibrations and Surgery Inv. Math.17 (1972) 191–202.CrossRefMathSciNetMATHGoogle Scholar
  3. [C-E]Cartan H., Eilenberg S.Homological Algebra. Princeton University Press 1956.Google Scholar
  4. [De]Dehn M. Über die Topologie des dreidimensional Raumes. Math. Ann.69 (1910) 127–168.CrossRefMathSciNetGoogle Scholar
  5. [D1]Dror E.,Acyclic Spaces, Topology11 (1972), 339–348.CrossRefMathSciNetMATHGoogle Scholar
  6. [D2]-Dror E. Homology Spheres. Israeli J. of Math.15 (1973).Google Scholar
  7. [D3]Dror E. A generalization of the Whitehead Theorem. Springer Lect. Notes 249, 13–22.Google Scholar
  8. [D-V]Dyer E., Vasquea A. T.Some small aspherical spaces. J. of the Australian Math. Soc. XVI (1973) 332–352.CrossRefGoogle Scholar
  9. [HO]Hausmann J.-Cl.Groupes de sphères d'homologie entière Thesis, Univ. of Geneva, 1974.Google Scholar
  10. [H1]Hausmann J.-Cl. Classification of homology spheres. Note Univ. of Geneva 1975.Google Scholar
  11. [H2]-—Homological surgery. Ann. of Math.104 (1976), 573–584.CrossRefMathSciNetGoogle Scholar
  12. [H3]Hausmann J.-Cl. Homology sphere bordism and Quillen plus construction. Algebraic K-theory, Evanston 1976, Springer Lect. Notes 551, 170–181.Google Scholar
  13. [H4]-—,Variétés avec une homologie et un groupe fondamental donné, C. R. Acad. Sc. Paris283 (1976), 241–244.MathSciNetMATHGoogle Scholar
  14. [H-V]Hausmann J.-Cl., Vogel P.The plus construction and lifting maps from manifolds. To appear in Proc. AMS Summer Institute Stanford, 1976.Google Scholar
  15. [Hi]Highman G. A finitely generated infinite simple group. J. London Math. Soc.26 (1951) 61–64.MathSciNetGoogle Scholar
  16. [Hu]Hu S. T. Homotopy theory. Academic Press 1959.Google Scholar
  17. [Ki]Kervaire M.,smooth homology spheres and their fundamental groups, Trans. AMS144 (1969) 67–72.CrossRefMathSciNetMATHGoogle Scholar
  18. [K2]Kervaire M. Multiplicateurs de Shur et K-theorie Essays on topology and related topics Springer 1970, 212–225.Google Scholar
  19. [K-M]Kervaire M., Milnor J.Groups of homotopy spheres Ann. of Math.77 (1963) 504–537CrossRefMathSciNetGoogle Scholar
  20. [M]Milnor J. A unique decomposition theorem for 3-manifold. Amer. J. of Math.84 (1962) 1–7.CrossRefMathSciNetMATHGoogle Scholar
  21. [N]Nakaoka M.,Decomposition Theorem for homology groups of symmetric groups, Ann. of Math.71 (1960) 16–42.CrossRefMathSciNetGoogle Scholar
  22. [P]Priddy S. Transfer, symmetric groups and stable homotopy theory. Algebraic K-theory I. Springer Lect. Notes 341, 244–259.Google Scholar
  23. [T]Toda H. Composition methods in homotopy groups of spheres. Princeton Univ. Press 1962.Google Scholar
  24. [V1]Vogel P. Cobordisme d'immersions. Ann. Ec. norm. Sup.7 (1974), 316–357.Google Scholar
  25. [V2]Vogel P. Un théorème d'Hurewicz homologique to appear in Comment. Math. Helv. Google Scholar
  26. [Wg]Wagoner J. Delooping classifying spaces in Algebraic K-theory. Topology II, (1972). 349–370.CrossRefMathSciNetGoogle Scholar
  27. [W]Wall C. T. C. Surgery on compact manifolds. Academic Press 1970.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Jean-Claude Hausmann
    • 1
  1. 1.University of GenevaSwitzerland

Personalised recommendations