Commentarii Mathematici Helvetici

, Volume 53, Issue 1, pp 113–134 | Cite as

Manifolds with a given homology and fundamental group

  • Jean-Claude Hausmann


Exact Sequence Fundamental Group Classification Theorem Homology Sphere Finite Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-E]Bieri R., Eckmann B.Finiteness properties of duality groups. Comment. Math. Helv.49 (1974) 74–83.MathSciNetzbMATHGoogle Scholar
  2. [B]Browder W.,Poincaré Spaces, Their normal fibrations and Surgery Inv. Math.17 (1972) 191–202.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [C-E]Cartan H., Eilenberg S.Homological Algebra. Princeton University Press 1956.Google Scholar
  4. [De]Dehn M. Über die Topologie des dreidimensional Raumes. Math. Ann.69 (1910) 127–168.CrossRefMathSciNetGoogle Scholar
  5. [D1]Dror E.,Acyclic Spaces, Topology11 (1972), 339–348.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [D2]-Dror E. Homology Spheres. Israeli J. of Math.15 (1973).Google Scholar
  7. [D3]Dror E. A generalization of the Whitehead Theorem. Springer Lect. Notes 249, 13–22.Google Scholar
  8. [D-V]Dyer E., Vasquea A. T.Some small aspherical spaces. J. of the Australian Math. Soc. XVI (1973) 332–352.CrossRefGoogle Scholar
  9. [HO]Hausmann J.-Cl.Groupes de sphères d'homologie entière Thesis, Univ. of Geneva, 1974.Google Scholar
  10. [H1]Hausmann J.-Cl. Classification of homology spheres. Note Univ. of Geneva 1975.Google Scholar
  11. [H2]-—Homological surgery. Ann. of Math.104 (1976), 573–584.CrossRefMathSciNetGoogle Scholar
  12. [H3]Hausmann J.-Cl. Homology sphere bordism and Quillen plus construction. Algebraic K-theory, Evanston 1976, Springer Lect. Notes 551, 170–181.Google Scholar
  13. [H4]-—,Variétés avec une homologie et un groupe fondamental donné, C. R. Acad. Sc. Paris283 (1976), 241–244.MathSciNetzbMATHGoogle Scholar
  14. [H-V]Hausmann J.-Cl., Vogel P.The plus construction and lifting maps from manifolds. To appear in Proc. AMS Summer Institute Stanford, 1976.Google Scholar
  15. [Hi]Highman G. A finitely generated infinite simple group. J. London Math. Soc.26 (1951) 61–64.MathSciNetGoogle Scholar
  16. [Hu]Hu S. T. Homotopy theory. Academic Press 1959.Google Scholar
  17. [Ki]Kervaire M.,smooth homology spheres and their fundamental groups, Trans. AMS144 (1969) 67–72.CrossRefMathSciNetzbMATHGoogle Scholar
  18. [K2]Kervaire M. Multiplicateurs de Shur et K-theorie Essays on topology and related topics Springer 1970, 212–225.Google Scholar
  19. [K-M]Kervaire M., Milnor J.Groups of homotopy spheres Ann. of Math.77 (1963) 504–537CrossRefMathSciNetGoogle Scholar
  20. [M]Milnor J. A unique decomposition theorem for 3-manifold. Amer. J. of Math.84 (1962) 1–7.CrossRefMathSciNetzbMATHGoogle Scholar
  21. [N]Nakaoka M.,Decomposition Theorem for homology groups of symmetric groups, Ann. of Math.71 (1960) 16–42.CrossRefMathSciNetGoogle Scholar
  22. [P]Priddy S. Transfer, symmetric groups and stable homotopy theory. Algebraic K-theory I. Springer Lect. Notes 341, 244–259.Google Scholar
  23. [T]Toda H. Composition methods in homotopy groups of spheres. Princeton Univ. Press 1962.Google Scholar
  24. [V1]Vogel P. Cobordisme d'immersions. Ann. Ec. norm. Sup.7 (1974), 316–357.Google Scholar
  25. [V2]Vogel P. Un théorème d'Hurewicz homologique to appear in Comment. Math. Helv. Google Scholar
  26. [Wg]Wagoner J. Delooping classifying spaces in Algebraic K-theory. Topology II, (1972). 349–370.CrossRefMathSciNetGoogle Scholar
  27. [W]Wall C. T. C. Surgery on compact manifolds. Academic Press 1970.Google Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Jean-Claude Hausmann
    • 1
  1. 1.University of GenevaSwitzerland

Personalised recommendations