Advertisement

Commentarii Mathematici Helvetici

, Volume 70, Issue 1, pp 423–433 | Cite as

Counterexamples to the Kneser conjecture in dimension four

  • Matthias Kreck
  • Wolfgang Lück
  • Peter Teichner
Article
  • 29 Downloads

Abstract

We construct a connected closed orientable smooth four-manifold whose fundamental group is the free product of two non-trivial groups such that it is not homotopy equivalent toM 0#M 1 unlessM 0 orM 1 is homeomorphic toS 4. LetN be the nucleus of the minimal elliptic Enrique surfaceV 1(2, 2) and putM=N∪ ∂NN. The fundamental group ofM splits as ℤ/2 * ℤ/2. We prove thatM#k(S 2×S2) is diffeomorphic toM 0#M 1 for non-simply connected closed smooth four-manifoldsM 0 andM 1 if and only ifk≥8. On the other hand we show thatM is homeomorphic toM 0#M 1 for closed topological four-manifoldsM 0 andM 1 withπ 1(Mi)=ℤ/2.

Keywords

Fundamental Group Free Product Homotopy Equivalent Regular Neighborhood Simple Homotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cappell, S. E.,On connected sums of manifolds, Topology13 (1974), 395–400.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Cappell, S. E.,A spitting theorem for manifolds, Inventiones Math.33 (1976), 69–170.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Cohen, M. M.,A course in simple homotopy theory, Graduate Texts in Mathematics10 (1973), Springer.Google Scholar
  4. [4]
    Donaldson, S. K.,The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. of Differential Geometry26 (1987), 397–428.MathSciNetGoogle Scholar
  5. [5]
    Freedman, M. H.,The topology of four-dimensional manifolds, J. of Differential Geometry17 (1982), 357–353.Google Scholar
  6. [6]
    Freedman, M. H.,The disk theorem for four-dimensional manifolds, Proc. Int. Cong. Math. Warsaw 1983 volume I, 647–663.Google Scholar
  7. [7]
    Gompf, R. E.,Nuclei of elliptic surfaces, Topology30, No. 3, (1991), 479–511.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Hillman, J. A.,Free products and 4-dimensional connected sums, preprint (1993).Google Scholar
  9. [9]
    Hog, C., Lustig, M. andMetzler, W.,Presentation classes, 3-manifolds and free products, Proceedings of the ConferenceGeometry and Topology 1983–1984, University of Maryland, in: J. Alexander and J. Harer (eds.), Lecture Notes in Mathematics1167 (1985), 154–167.Google Scholar
  10. [10]
    Kirby, R. C. andSiebenmann, L.,Foundational essays on topological manifolds, smoothings and triangulations, Annals of Mathematics Studies88 (1977), Princeton University Press.Google Scholar
  11. [11]
    Kreck, M., Lück, W. andTeichner, P.,Stable Prime Decompositions of Four-Manifolds, preprint, Mainz (1994). To appear in the Proceedings of the Browder Conference 1994.Google Scholar
  12. [12]
    Lyndon, R. C. andSchupp, P. E.,Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete89 (1977), Springer.Google Scholar
  13. [13]
    Serre, J. P.,A course in arithmetic, Graduate Texts in Mathematics7 (1977), Springer.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Matthias Kreck
    • 1
    • 2
    • 3
    • 4
  • Wolfgang Lück
    • 1
    • 2
    • 3
    • 4
  • Peter Teichner
    • 1
    • 2
    • 3
    • 4
  1. 1.Fachbereich MathematikJohannes Gutenberg-UniversitätMainzBundesrepublik Deutschland
  2. 2.Mathematisches Forschungsinstitut OberwolfachOberwolfach-WalkeBundesrepublik Deutschland
  3. 3.University of CaliforniaSan Diego
  4. 4.Department of MathematicsLaJollaU.S.A.

Personalised recommendations