Commentarii Mathematici Helvetici

, Volume 34, Issue 1, pp 257–270 | Cite as

A manifold which does not admit any differentiable structure

  • Michel A. Kervaire
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. Bott andH. Samelson,On the Pontryagin product in spaces of paths. Comment. Math. Helv. 27 (1953), 320–337.CrossRefMathSciNetGoogle Scholar
  2. [2]
    S. T. Hu,Homotopy theory. Academic Press, 1959.Google Scholar
  3. [3]
    M. A. Kervaire,Relative characteristic classes. Amer. J. Math., 79 (1957), 517–558.CrossRefMathSciNetGoogle Scholar
  4. [4]
    M. A. Kervaire,Some non-stable homotopy groups of Lie groups. Illinois J. Math., 4 (1960), 161–169.MathSciNetGoogle Scholar
  5. [5]
    J. Milnor,Differentiable structures on spheres. Amer. J. Math., 81 (1959), 962–972.CrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Milnor,A procedure for killing homotopy groups of differentiable manifolds. Proceedings of the Symposium on Differential Geometry. Tucson, 1960, to appear.Google Scholar
  7. [7]
    J. Milnor andM. A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin. Proceedings of the Int. Congress of Math., Edinburgh, 1958.Google Scholar
  8. [8]
    J. P. Serre,Groupes d'homotopie et classes de groupes abeliens. Ann. of Math., 58 (1953), 258–294.CrossRefMathSciNetGoogle Scholar
  9. [9]
    J. P. Serre,Cohomologie modulo 2 des complexes d' Eilenberg-MacLane. Comment. Math. Helv., 27 (1953), 198–232.CrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Thom,Quelques propriétés globales des variétés différentiables. Comment. Math. Helv., 28 (1954), 17–86.CrossRefMathSciNetGoogle Scholar
  11. [11]
    H. Toda,On exact sequences in Steenrod algebra mod. 2. Memoirs of the College of Science, University of Kyoto, 31 (1958), 33–64.MathSciNetGoogle Scholar
  12. [12]
    J. H. C. Whitehead,Note on suspension. Quart. J. Math. Oxford, Ser. (2), 1 (1950), 9–22.MathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1960

Authors and Affiliations

  • Michel A. Kervaire
    • 1
  1. 1.New YorkUSA

Personalised recommendations