Commentarii Mathematici Helvetici

, Volume 34, Issue 1, pp 227–248 | Cite as

Invariance of vector form operations under mappings

  • Alfred Frölicher
  • Albert Nijenhuis
Article

Bibliography

  1. [1]
    Borel A. andHirzebruch F.:Characteristic classes and homogeneous spaces I. Amer. J. of Math.,80 (1958), 458–538.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Eilenberg S. andSteenrod N.:Foundations of algebraic topology. Princeton University Press, 1952.Google Scholar
  3. [3]
    Frölicher A.: Zur Differentialgeometrie der komplexen Strukturen. Math. Ann.,129 (1955), 50–95.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Frölicher A. andNijenhuis, A.:Theory of vector-valued differential forms, Part I; Derivations on the graded ring of differential forms. Proc. Kon. Ned. Akad. Wet. Amsterdam,59. Indagationes Math.18 (1956), 338–359.Google Scholar
  5. [5]
    Frölicher A. andNijenhuis A.: (to appear).Google Scholar
  6. [6]
    Koszul J. L.:Sur la forme hermitienne canonique des espaces homogènes complexes. Canadian J. of Math.,7 (1955), 562–576.MathSciNetGoogle Scholar
  7. [7]
    Nijenhuis A.:Jacobi-type identities for bilinear differential concomitants of certain tensor fields. Proc. Kon. Ned. Akad. Wet. Amsterdam.58. Indagationes Math.17 (1955), 390–403.MathSciNetGoogle Scholar
  8. [8]
    Schouten J. A.:Über Differentialkomitanten zweier kontravarianter Größen. Proc. Kon. Ned. Akad. Wet. Amsterdam,43, 449–452. Indagationes Math.2(1940), 182–185.Google Scholar
  9. [9]
    Wang, H.-C.:Closed manifolds with homogeneous complex structure. American Journal of Mathematics,76 (1954), 1–32.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1960

Authors and Affiliations

  • Alfred Frölicher
    • 1
    • 2
  • Albert Nijenhuis
    • 1
    • 2
  1. 1.Université de FribourgFribourgSwitzerland
  2. 2.University of WashingtonSeattleU.S.A.

Personalised recommendations