Commentarii Mathematici Helvetici

, Volume 57, Issue 1, pp 445–468 | Cite as

Die Resolvente von Δ auf symmetrischen Räumen vom nichtkompakten Typ

  • Noel Lohoué
  • Thomas Rychener
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Dynkin, E. B., Markoff-Prozesse, Bd. II, Springer-Verlag, Berlin, 1965.Google Scholar
  2. [2]
    Eskin, L. D.,The Heat Equation and the Weierstrass Transform on Certain Riemannian Spaces, Amer. Math. Soc. Transl.75, S. 239–255.Google Scholar
  3. [3]
    Gangolli, R.,Asymptotic Behaviour of Spectra of Compact Quotients of Certain Symmetric Spaces, Acta Math,121, S. 151–192 (1969).CrossRefMathSciNetGoogle Scholar
  4. [4]
    Gaveau et al.,théorèmes de comparaison en géométrie Riemannienne, Publ. Inst. Math. Sci. Kyoto University, No. 21,12 (1976).MathSciNetGoogle Scholar
  5. [5]
    Gelfand, I. M. undNeumark, M. A.,Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin 1957.MATHGoogle Scholar
  6. [6]
    —,Analogon der Plancherelformel für reelle halbeinfache Lie-Gruppen, Doklady Akad. Nauk SSSR (N.S.),92 (russisch) (1953), 461–464.MathSciNetGoogle Scholar
  7. [7]
    Godement, R.,A Theory of Spherical Functions I, Trans. Amer. Math. Soc.73, S. 496–556 (1952).CrossRefMathSciNetGoogle Scholar
  8. [8]
    Harisch-Schandra,Spherical Functions on a Semisimple Lie Group I, Amer. J. Math.80, (1958), 241–310.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Karpelevic, F. I.,The Geometry of Geodesics and Eigenfunctions of the Beltrami-Laplace Operator on Symmetric Spaces, Trans. Moscow Math. Soc.14, (1965), 51–199.MathSciNetGoogle Scholar
  10. [9a]
    Koornwinder, T.,A new Proof of a Paley-Wiener Type Theorem for the Jacobi Transform; Ark. för Math.13, (1975), 145–159.CrossRefMathSciNetGoogle Scholar
  11. [10]
    Lohoué, N.,Estimations L p des coefficients de représentations et opérateurs de convolution, Advances in Math.38, (1980), 178–221.CrossRefGoogle Scholar
  12. [11]
    Lohoué, N.,Sur les représentations uniformément bornées et le thèorème de convolution de Kunze-Stein, Publ. Math. d'Orsay 1975.Google Scholar
  13. [12]
    Lohoué, N.,Puissances Complexes de l'opérateur de Laplace-Beltrami (erscheint in C. R. Acad. Sci. Paris).Google Scholar
  14. [13]
    McKean, H. P.,An Upper Bound to the Spectrum of Δ on a Manifold of Negative Curvature, J. Diff. Geom.4, S. (1969), 359–366.MathSciNetGoogle Scholar
  15. [14]
    Malliavin, P.,Asymptotics of the Green Function on a Riemannian Manifold, Proc. Nat. Acad. Sci. USA,71, (1974), 381–383.CrossRefGoogle Scholar
  16. [15]
    Molcanov, S. A.,Diffusion Processes and Riemannian Geometry, Russian Math. Surveys30, (1975), 1–63.CrossRefMathSciNetGoogle Scholar
  17. [16]
    Nelson, E.,Analytic Vectors, Annals of Math.70, (1959), 572–615.CrossRefGoogle Scholar
  18. [17]
    Stein, E. M.,Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Annals of Math. Study, No 63, Princeton 1970.Google Scholar
  19. [18]
    Stein, E. M.,Singular Integrals and Differentiability Properties of Functions, Princeton University Press 1970.Google Scholar
  20. [19]
    Takahaschi, R.,Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Math. France (1963), 289–433.Google Scholar
  21. [20]
    Takahaschi, R.,Quelques résultats sur l'analyse harmonique dans l'espace symétrique non compact de rang un du type exceptionnel, Vordruck, Nancy 1975.Google Scholar
  22. [21]
    Stanton, R. I., Tomas, P. A.,Expansion for Spherical Functions on Noncompact Symmetric Spaces, Acta Math. (1978), 251–276.Google Scholar
  23. [22]
    Wallach, N.,Harmonic Analysis on Homogeneous Spaces, Pure and applied Mathematics, Bd. 19, M. Dekker, Inc. New York (1973).Google Scholar

Copyright information

© Birkhäuser Verlag 1982

Authors and Affiliations

  • Noel Lohoué
    • 1
    • 2
  • Thomas Rychener
    • 1
    • 2
  1. 1.Fresnes/ParisFrance
  2. 2.BernSchweiz

Personalised recommendations