Commentarii Mathematici Helvetici

, Volume 68, Issue 1, pp 599–621 | Cite as

On Cheeger's inequality

  • Robert Brooks
  • Peter Perry
  • Peter PetersenV
Article
  • 121 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bi]F. Bien,Construction of telephone networks by group representations, Notices AMS36 (1989), 5–22.MathSciNetGoogle Scholar
  2. [BPP]R. Brooks, P. Perry, andP. Petersen,Some examples in L p spectral geometry, to appear in J. Geo. Anal.Google Scholar
  3. [BT]R. Brooks andR. Tse,Isospectral surface of small genus, Nagoya Math. J.107 (1987), 13–24.MathSciNetGoogle Scholar
  4. [Bu]P. Buser,A note on the isoperimetric constant, Ann. Sci. Ec. Norm. Sup.15 (1982), 213–230.MathSciNetGoogle Scholar
  5. [Bu2]P. Buser,Cayley graphs and planar isospectral domains, in T. Sunada (ed.),Geometry and Analysis on Manifolds, Springer Lecture Notes 1339 (1988), pp. 64–77.Google Scholar
  6. [Bu3]P. Buser,On Cheeger's inequality λ 1≥h2/4, inGeometry of the Laplace Operator, Proc. Symp. Pure Math36 (1980), 29–77.Google Scholar
  7. [BBD]P. Buser, M. Burger, andJ. Dodziuk,Riemann surfaces of large genus and large λ 1, in T. Synada (ed.),Geometry and Analysis on Manifolds, Springer Lecture Notes 1339 (1988), pp. 54–63.Google Scholar
  8. [Ch]J. Cheeger,A lower bound for the smallest eigenvalue of the Laplacian, in Gunning (ed.),Problems in Analysis, Princeton University Press (1970), pp. 195–199.Google Scholar
  9. [Gal]S. Gallot,Isoperimetric inequalities based on integral norms of Ricci curvature, Astérisque157–158 (1988), 191–216.MathSciNetGoogle Scholar
  10. [Se]A. Selberg,On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math.VIII (1965), 1–15.MathSciNetGoogle Scholar
  11. [Su]T. Sunada,Riemannian coverings and isospectral manifolds, Ann. Math.121 (1985), 169–186.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Robert Brooks
    • 1
    • 2
    • 3
  • Peter Perry
    • 1
    • 2
    • 3
  • Peter PetersenV
    • 1
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos Angeles
  2. 2.Department of MathematicsUniversity of KentuckyLexington
  3. 3.Department of MathematicsUniversity of California at Los AngelesLos Angeles

Personalised recommendations