Advertisement

Antonie van Leeuwenhoek

, Volume 41, Issue 1, pp 543–552 | Cite as

Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees

  • J. G. Zeikus
  • Diane L. Henning
Article

Abstract

The isolation and characterization of a new methanogenic bacterium,Methanobacterium arbophilicum, is described. Isolation from wetwood enrichment cultures, that were obtained from methane-positive trees, required a medium containing inorganic salts, vitamins, and an atmosphere consisting of an 80∶20 mixture of hydrogen-carbon dioxide. Isolates ofM. arbophilicum were gram-positive, non-motile short rods that occurred singly, in pairs, or chains. The organism was found to be an autotroph and a strict anaerobe, and to have a pH optimum of 7.5–8.0. The optimal temperature for growth was 30 to 37C, the maximum being 45C and the minimum about 10C. The organism had obligate growth requirements for H2 and CO2, and organic compounds greatly stimulated growth. The generation time in shake flask culture was about 17 hr in mineral salts medium and about 13 hr in complex medium. The DNA base composition was 27.5 mol % GC.

Keywords

Shake Flask Mineral Salt Medium Living Tree Shake Flask Culture Rumen Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, P. E., Seidler, R. J., Evans, H. T. andRaju, P. N. 1974. Distribution, enumeration and identification of nitrogen-fixing bacteria associated with decay in living white fir trees. —Phytopathology64: 1413–1420.CrossRefGoogle Scholar
  2. Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. —Am. J. Clin. Nutr.25: 1324–1328.PubMedGoogle Scholar
  3. Bryant, M. P. 1974. Methane-producing bacteria. Part B. 472–477.In R. E. Buchanan and N. E. Gibbons, (eds.), Bergey's Manual of Determinative Bacteriology, 8th Ed.—Williams and Wilkins Co., Baltimore.Google Scholar
  4. Bryant, M. P., Tzeng, S. F., Robinson, I. M. andJoyner, A. E., Jr. 1971. Nutrient requirements of methanogenic bacteria, p. 23–40.In F. G. Pohland, Anaerobic biological treatment processes.—Advances in Chemistry, Series, 105, American Chem. Soc., Washington, D.C.Google Scholar
  5. Carter, J. C. 1945. Wetwood of elms. Ill. Dat. Hist. Surv. Bull.23: 407–448.Google Scholar
  6. Daniels, L. andZeikus, J. G. 1975. Improved culture flask for obligate anaerobes.—Appl. Microbiol.29: 710–711.PubMedGoogle Scholar
  7. De Ley, J. 1970. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid.—J. Bacteriol.101: 738–754.PubMedGoogle Scholar
  8. Hartley, C. R., Davidson, W. andCrandall, B. S. 1961. Wetwood, bacteria and increased pH in trees.—U.S. Dept. Agric. For. Service, For. Prod. Lab., Rep. 2215.Google Scholar
  9. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes, p. 117.In J. R. Norris and D. W. Ribbons, (eds.), Methods in Microbiology, Vol. 3B.—Academic Press, New York.Google Scholar
  10. Knutson, P. M. 1973. The bacteria in sapwood, wetwood and heartwood of trembling aspen (Populus tremuloides).—Can. J. Bot.51: 498–500.CrossRefGoogle Scholar
  11. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. —J. Mol. Biol.3: 208–218.CrossRefGoogle Scholar
  12. Nelson, D. R. andZeikus, J. G. 1974. Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism.—Appl. Microbiol.28: 258–261.PubMedGoogle Scholar
  13. Schildkraut, C. L., Marmur, J. andDoty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl.—J. Mol. Biol.4 430–443.PubMedCrossRefGoogle Scholar
  14. Stankewich, J. P., Cosenza, B. J. andShigo, A. L. 1971.Clostridium quercicolum sp. n., isolated from discolored tissues in living oak trees.—Antonie van Leeuwenhoek37: 299–302.PubMedCrossRefGoogle Scholar
  15. Ward, J. C., Kuntz, J. E. andMcCoy, E. M. 1969. Bacteria associated with shake in broadleaf trees.—Phytopathology59: 1056.Google Scholar
  16. Wolin, E. A., Wolin, M. J. andWolfe, R. S. 1963. Formation of methane by bacterial extracts.—J. Biol. Chem.238: 2882–2886.PubMedGoogle Scholar
  17. Zeikus, J. G. andBowen, V. G. 1975. Comparative ultrastructure of methanogenic bacteria. —Can. J. Microbiol21: 121–129.PubMedCrossRefGoogle Scholar
  18. Zeikus, J. G. andWard, J. C. 1974. Methane formation in living trees: a microbial origin.— Science184: 1181–1183.CrossRefPubMedGoogle Scholar
  19. Zeikus, J. G., Weimer, P. J., Nelson, D. R. andDaniels, L. 1975. Bacterial methanogenesis: acetate as a methane precursor in pure culture.—Arch. Microbiol.104: 129–134.CrossRefGoogle Scholar
  20. Zeikus, J. G. andWolfe, R. S. 1972.Methanobacterium thermoautotrophicum sp. n., an anaerobic autotrophic, extreme thermophile.—J. Bacteriol.109: 707–713.PubMedGoogle Scholar

Copyright information

© H. Veenman & Zonen B.V. Publishers 1975

Authors and Affiliations

  • J. G. Zeikus
    • 1
  • Diane L. Henning
    • 1
  1. 1.Department of BacteriologyUniversity of WisconsinMadisonUSA

Personalised recommendations