, Volume 6, Issue 2, pp 397–418 | Cite as

A fast permutation-based algorithm for block clustering

  • I. Llatas
  • A. J. Quiroz
  • J. M. Renóm


A stepwise divisive procedure for the clustering of numerical data recorded in matrix form into homogeneous groups is introduced. The methodology relates to those proposed by Hartigan (1972) and Duffy and Quiroz (1991). As the latter, the proposed methodology uses the permutation distribution of the data in a block as the reference distribution to make inferences about the presence of clustering structure. A local (within block) criteria and Bayesian sequential decision methodology are used to evaluate the significance of potential partitions of blocks, resulting in an algorithm which is faster than those considered by Duffy and Quiroz (1991). The class of possible clustering structures that our procedure can discover is also larger than those previously considered in the literature.

Key Words

Binary splitting block clustering permutation distribution Bayesian sequential analysis 

AMS subject classification

93E20 62F35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, J. (1991).Bayesian Statistics. New York: Springer-Verlag.Google Scholar
  2. Duffy, D. E. and A. J. Quiroz (1991). A permutation-based algorithm for block clustering.Journal of Classification 8 65–91.MathSciNetGoogle Scholar
  3. Fowlkes, E. and C. Mallows (1983). A measure for comparing two hierarchical clusters. Journal of the American Statistical Association,78 553–584.CrossRefGoogle Scholar
  4. Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the American Statistical Association,78 123–129.CrossRefGoogle Scholar
  5. Hartigan, J. A. (1975).Clustering Algorithms. John Wiley, New York.MATHGoogle Scholar
  6. Hartigan, J. A. (1976). Modal blocks in dentition of West Coast Mammals.Systematic Zoology 25 149–160.CrossRefGoogle Scholar
  7. Milligan, G. W. and M. C. Cooper (1985). An examination of procedures for determining the number of clusters in a data set.Psychometrica,50 159–179.CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 1997

Authors and Affiliations

  • I. Llatas
    • 1
  • A. J. Quiroz
    • 2
  • J. M. Renóm
    • 3
  1. 1.CESMa & Departamento de Procesos y SistemasUniversidad Simón BolívarCaracasVenezuela
  2. 2.Departamento de Cómputo Científico y EstadísticaUniversidad Simón BolívarCaracasVenezuela
  3. 3.Departamento de MatemáticasUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations