Advertisement

Commentarii Mathematici Helvetici

, Volume 58, Issue 1, pp 453–502 | Cite as

Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2

  • Michael R. Herman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    G. André etS. Aubry,Analyticity breaking and Anderson localization in incommensurate lattices, Annals of the Israel Phys. Soc.,3 (1979), 133–164.Google Scholar
  2. [2]
    M. M. Benderskii etL. A. Pastur,On the spectrum of the one dimensional Schrödinger equation with random potential, Math. U.S.S.R. Sbornik,11 (1970), 245–256.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Y. Derriennic,Sur le théorème ergodique sous additif, C.R. Acad. Sc. Paris,281 (1975), 985–988.MathSciNetGoogle Scholar
  4. [4]
    M. R. Herman,Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S.,49 (1979), 5–233.MathSciNetGoogle Scholar
  5. [5]
    —,Construction d’un difféomorphisme minimal d’entropie topologique non nulle, Ergod, Th. and Dynam. Sys.,1 (1981), 65–76.MathSciNetGoogle Scholar
  6. [6]
    M. R. Herman,Démonstration du théorème des courbes invariantes, manuscrit, à paraître, et “théorèmes des fonctions implicites dans les espaces de Fréchet et quelques applications aux systèmes dynamiques” cours à l’E.N.S. à paraître à Astérisque.Google Scholar
  7. [7]
    L. Hörmander,Complex analysis in several variables, D. Van Nostrand, New York (1966).zbMATHGoogle Scholar
  8. [8]
    R. A. Johnson,Ergodic theory and linear differential equations, J. Diff. Equations,28 (1978), 23–34.CrossRefGoogle Scholar
  9. [9]
    —,On a Floquet theory for two-dimensional almost periodic linear systems, J. Diff. Equations,37 (1980), 184–205.CrossRefGoogle Scholar
  10. [10]
    —,The recurrent Hill’s equation J. Diff. Equations,46 (1982), 165–193.CrossRefGoogle Scholar
  11. [11]
    — etJ. Moser,The rotation number for almost periodic potentials, Com. in Math. Phy.,84 (1982), 403–438.CrossRefMathSciNetGoogle Scholar
  12. [12]
    P. Lelong,Fonctionnelles analytiques et fonctions entières (n-variables), Presse Univ. de l’Univ. de Montréal (1968).Google Scholar
  13. [13]
    V. Millionščikov,Proof of the existence… quasi-periodic coefficients Diff. Equations,5 (1969), 1475–8; voir aussi,Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients, Diff. Equations,4 (1968), 203–205.Google Scholar
  14. [14]
    J. Moser,Convergent series expansions for quasi periodic motions Math. Annalen,169 (1967), 136–176.CrossRefGoogle Scholar
  15. [15]
    D. Ruelle,Ergodic theory of differentiable dynamical systems, Publ. Math. I.H.E.S.,50 (1979), 27–58MathSciNetGoogle Scholar
  16. [16]
    W. Rudin,Fourier Analysis on groups, J. Wiley et Sons, New York (1962).zbMATHGoogle Scholar
  17. [17]
    H. Rüssmann,On the one-dimensional Schrödinger equation with a quasi-periodic potential, Annals of the New-York Acad Sci.,357 (1980), 90–107.CrossRefGoogle Scholar
  18. [18]
    M. Shub,Stabilité globale des systèmes dynamiques, Société Math. Fr., Astérisque no56 (1978).Google Scholar
  19. [19]
    R. E. Vinograd,A problem by N. P. Erugin, Diff. Equations,11 (1974), 474–478.Google Scholar
  20. [20]
    E. Zenhder,A simple proof of a generalisation of a theorem of C. L. Siegel, Springer Lect. notes in Math. no579, Springer Verlag (1977), 855–866.Google Scholar
  21. [A]
    J. Avron andB. Simon,Singular continous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc.,6 (1982), 81–83.MathSciNetGoogle Scholar
  22. [H]
    H. H. Hardy andJ. E. Littlewood,Notes on the theory of series XXIV. A curious power series, Proc. Cambridge Philos. Soc.,42 (1946), 85–90.MathSciNetGoogle Scholar
  23. [K]
    J. F. Koksma,A Diophantine property of some summable functions, J. Indian Math. Soc. (N.S.),15 (1951), 87–96.MathSciNetGoogle Scholar
  24. [M]
    M. Mañé,Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Transactions A.M.S.,229 (1977), 351–370.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • Michael R. Herman
    • 1
  1. 1.Centre de MathématiquesEcole PolytechniquePalaiseauFrance

Personalised recommendations