Commentarii Mathematici Helvetici

, Volume 69, Issue 1, pp 142–154 | Cite as

Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains

  • Giovanni Alessandrini
Article

Abstract

We describe the boundary behavior of the nodal lines of eigenfunctions of the fixed membrane problem in convex, possibly nonsmooth, domains. This result is applied to the proof of Payne’s conjecture on the nodal line of second eigenfunctions [P1], by removing theC smoothness assumption which is present in the original proof of Melas [M].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]G. Alessandrini,Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)14 (1987), 229–256.MathSciNetGoogle Scholar
  2. [A-M]G. Alessandrini andR. Magnanini,The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm Sup. Pisa Cl. Sci. (4)19 (1992), 567–589.MathSciNetGoogle Scholar
  3. [C]S. Y. Cheng,Eigenfunctions and nodal sets, Comment. Math. Helv.51 (1976), 43–55.MathSciNetGoogle Scholar
  4. [C-H]R. Courant andD. Hilbert,Methods of Mathematical Physics, Vol. 1., Interscience, New York, 1953.Google Scholar
  5. [G]P. Grisvard,Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.MATHGoogle Scholar
  6. [H-W]P. Hartman andA. Wintner,On the local behaviour of solutions of non-parabolic partial differential equations, Amer. J. Math.76 (1953), 449–476.CrossRefMathSciNetGoogle Scholar
  7. [J]D. Jerison,The first nodal line of a convex planar domain, Duke Math. J.62 (1991). Internat. Math. Res. Notices1 (1991), 1–5.CrossRefMathSciNetGoogle Scholar
  8. [L]C. S. Lin, On the second eigenfunctions of the Laplacian in ℝm, Comm. Math. Phys.111 (1987), 161–166.CrossRefMathSciNetGoogle Scholar
  9. [M]A. D. Melas, On the nodal line of the second eigenfunction of the Laplacian in ℝm, J. Differential Geom.35 (1992), 255–263.MathSciNetGoogle Scholar
  10. [P1]L. Payne,Isoperimetric inequalities and their applications, SIAM Rev.9 (1967), 453–488.CrossRefMathSciNetGoogle Scholar
  11. [P2]L. Payne,On two conjectures on the fixed membrane eigenvalue problem, Z. Angew. Math. Phys.24 (1973), 720–729.CrossRefGoogle Scholar
  12. [Pü]R. Pütter,On the nodal line of second eigenfunctions of the fixed membrane problem, Comment. Math. Helv.65 (1990), 96–103.MathSciNetGoogle Scholar
  13. [S]F. Schulz,Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Springer, New York, 1990.MATHGoogle Scholar
  14. [Y]S. T. Yau,Problem section, in: S. T. Yau (ed.),Seminar on Differential Geometry, Ann. of Math Stud.102, Princeton Univ. Press, Princeton, 1982, 669–706.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • Giovanni Alessandrini
    • 1
  1. 1.Dipartimento di Scienze MatematicheUniversità degli Studi di TriesteTrieste

Personalised recommendations