Commentarii Mathematici Helvetici

, Volume 62, Issue 1, pp 311–337 | Cite as

Galois coverings of representation-infinite algebras

  • Piotr Dowbor
  • Andrzej Skowroński
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Auslander, M.,Applications of morphisms determined by objects. In:Representation theory of algebras (R. Gordon, ed.). Proceedings of Conference (Philadelphia 1976), pp. 245–327, New York-Basel, Marcel Dekker 1978.Google Scholar
  2. [2]
    Auslander, M. andReiten, I.,Representation theory of artin algebra IV; Invariants given by almost split sequences, Comm. Algebra5 (1977), 443–518.MATHMathSciNetGoogle Scholar
  3. [3]
    Auslander, M. andReiten, I.,Uniserial functors. In:Representation Theory II (V. Dlab, P. Gabriel, eds.) Proceedings (Ottawa 1979), pp. 1–47, Springer Lect. Notes in Math. 832.Google Scholar
  4. [4]
    Baer, D.,Zerlegungen von Moduln und Injektive über Ringoiden, Arch. Math.36 (1981), 495–501.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    Bautista, R., Gabriel, P., Rojter, A. V. andSalmerón, L.,Representation-finite algebras and multiplicative bases, Invent. Math.81 (1985), 217–285.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Bondarenko, M. V.,Representations of dihedral groups over a field of characteristic 2, Math. Sbornik96 (1975), 63–74.MathSciNetGoogle Scholar
  7. [7]
    Bongartz, K.,Treu einfach zusammenhängende Algebren I, Comment. Math. Helv.57 (1982), 282–330.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Bongartz, K.,A criterion for finite representation type, Math. Ann. 269 (1984), 1–12.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    Bongartz, K.,Critical simply connected algebras, Manuscripta Math.46 (1984), 117–136.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Bongartz, K. andGabriel, P.,Covering spaces in representation theory, Invent. Math.65 (1982), 331–378.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    Bongartz, K. andRingel, C. M.,Representation-finite tree algebras, Proc. Puebla 1980, Springer Lect. Notes 903, 39–54.Google Scholar
  12. [12]
    Bretcher, O. andGabriel, P.,The standard from of a representation-finite algebra, Bull. Soc. Math. France111 (1983), 21–40.MathSciNetGoogle Scholar
  13. [13]
    Dlab, V. andRingel, C. M.,Indecomposable representations of graphs and algebras, Memoirs Amer. Math. Soc.173 (1976).Google Scholar
  14. [14]
    Donovan, P. W. andFreislich, M. R.,The representation theory of finite graphs and associated algebras, Carleton Math. Lect. Notes5 (1973).Google Scholar
  15. [15]
    Dowbor, P. andSkowroński, A.,On Galois coverings of tame algebras, Arch. Math.44 (1985), 522–529.CrossRefMATHGoogle Scholar
  16. [16]
    Dowbor, P. andSkowroński, A.,On the representation type of locally bounded categories, Tsukuba J. Math.,10 No. 1 (1986), 63–72.MATHMathSciNetGoogle Scholar
  17. [17]
    Dowbor, P., Lenzing, H. andSkowroński, A.,Galois coverings of algebras by locally support-finite categories, Proc. Ottawa, 1984, Springer Lect. Notes 1177, 91–93.Google Scholar
  18. [18]
    Gabriel, P.,Unzerlegbare Darstellungen I, Manuscripta Math.6 (1972), 71–103.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Gabriel, P.,Auslander-Reiten sequences and representation-finite algebras, In:Representation Theory I, Proc. Ottawa 1979, Springer Lect. Notes 831, 1–71.Google Scholar
  20. [20]
    Gabriel, P.,The universal cover of a representation-finite algebra, Proc. Puebla 1980, Springer Lect. Notes 903, 68–105.Google Scholar
  21. [21]
    Gelfand, I. M. andPonomarev, V. A.,Indecomposable representations of the Lorentz group, Usp. Math. Nauk23 (1968), 3–60.MathSciNetGoogle Scholar
  22. [22]
    Happel, D. andVossieck, D.,Minimal algebras of infinite representation type with preprojective component, Manuscripta Math.42 (1983), 221–243.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    Mac Lane, S.,Categories for the working mathematicians, Springer Verlag 1971.Google Scholar
  24. [24]
    Martinez, R. andde la Peña, J. A.,Automorphisms of representation-finite algebras, Invent. Math.72 (1983), 359–362.CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    Martinez, R. andde la Peña, J. A.,The universal cover of a quiver with relations, J. Pure Appl. Algebra30 (1983), 277–292.CrossRefMATHMathSciNetGoogle Scholar
  26. [26]
    Nazarova, L. A.,Representations of quivers of infinite type, Izv. Akad. Nauk. SSSR. Ser. Mat.37 (1973), 752–791.MATHMathSciNetGoogle Scholar
  27. [27]
    Pogarzały, Z. andSkowroński, A.,On algebras whose indecomposable modules are multiplicity-free, Proc. London Math. Soc.47 (1983), 463–479.MathSciNetGoogle Scholar
  28. [28]
    Ringel, C. M.,The indecomposable representatios of dihedral 2-groups, Math. Ann.214 (1975), 19–34.CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    Skowroński, A.,Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc., to appear.Google Scholar
  30. [30]
    Skowroński, A.,The representation type of group algebras In:Abelian groups and modules, Proc. Udine 1984, CISM 287, 517–531, Wien-New York 1984.Google Scholar
  31. [31]
    Skowroński, A. andWaschbüsch, J.,Representation-finite biserial algebras, J. Reine Angew. Math.345 (1983), 172–181.MathSciNetGoogle Scholar
  32. [32]
    Wald, B. andWaschbüsch, J.,Tame biserial algebras, J. Algebra95 (1985), 480–500.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    Warfield, R. B.,A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc.22 (1969), 460–465.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • Piotr Dowbor
    • 1
  • Andrzej Skowroński
    • 1
  1. 1.Institute of MathematicsNicholas Copernicus UniversityTorúnPoland

Personalised recommendations