Advertisement

Test

, Volume 6, Issue 1, pp 101–118 | Cite as

Properties of intrinsic and fractional Bayes factors

  • A. O’Hagan
Article

Summary

The Fractional Bayes Factor and various forms of Intrinsic Bayes Factor are related methods which have been proposed for Bayesian model comparison when prior information about model parameters is weak. This paper identifies and contrasts various properties of these methods, with particular reference to coherence and practicality.

Keywords

Bayes Factor Coherence Consistency Encompassing Model Fractional Bayes Factor Intrinsic Bayes Factor Invariance Likelihood Principle Outliers Sufficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, J. O. and Bernardo, J. M. (1992). On development of the reference prior method.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 45–65, (with discussion).Google Scholar
  2. Berger, J. O. and Pericchi, L. R. (1995). On the justification of default and intrinsic Bayes factors.Tech. Rep. 95-18C, Department of Statistics, Purdue University.Google Scholar
  3. Berger, J. O. and Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction.J. Amer. Statist. Assoc. 91, 109–122.CrossRefMathSciNetGoogle Scholar
  4. Berger, J. O. and Wolpert, R. L. (1988).The Likelihood Principle, 2nd edn. Institute of Mathematical Statistics, Hayward, California.Google Scholar
  5. Draper, D. (1995). Asessment and propagation of model uncertainty.J. Roy. Statist. Soc. B 57, 45–97 (with discussion).MathSciNetGoogle Scholar
  6. Gelfand, A. and Dey, D. K. (1994). Bayesian model choice: asymptotics and exact calculations.J. Roy. Statist. Soc. B 56, 501–514.MathSciNetGoogle Scholar
  7. Gilks, W. R. (1995) Discussion of O’Hagan (1995).J. Roy. Statist. Soc. B 57, 188–120.Google Scholar
  8. Lempers, F. B. (1971).Posterior Probabilities of Alternative Linear Models. Rotterdam: University Press.zbMATHGoogle Scholar
  9. O’Hagan, A. (1994).Bavesian Inference. Kendall’s Advanced Theory of Statistics 2B, London: Edward Arnold.Google Scholar
  10. O’Hagan, A. (1995). Fractional Bayes factors for model comparison.J. Roy. Statist. Soc. B 57, 99–138.MathSciNetGoogle Scholar

Copyright information

© SEIO 1997

Authors and Affiliations

  • A. O’Hagan
    • 1
  1. 1.Department of MathematicsUniversity of NottinghamNottinghamUK

Personalised recommendations