, Volume 5, Issue 2, pp 345–356 | Cite as

On close relations of local likelihood density estimation

  • M. C. Jones


Recent papers of Copas (1995), Hjort and Jones (1996) and Loader (1996) have developed closely related methods for “local likelihood” density estimation. In various places, however, a more “simple-minded” and explicit analogue of local polynomial fitting in regression has been proposed for density estimation. By introducing the usual kind of binning procedure into Hjor and Jones' method, it is shown how the more and less sophisticated versions can be reconciled. Also, we attempt to understand better the role of the attractive subclass of local likelihood methodology proposed by Loader. Finally, we look at a further subset of methods and make some theoretical comparisons between members of this class.


Kernel smoothing Local linear regression Semiparametric density estimation Transformations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, M., Augustyns, I. and Janssen, P. (1996). Smoothing sparse multinomial data using local polynomial fitting. (to appear).Google Scholar
  2. Cheng, M. Y. (1996). Boundary-aware estimators of integrated density derivative products.J. Roy. Statist. Soc. B (to appear).Google Scholar
  3. Cheng, M. Y., Fan, J. S. and Marron, J. S. (1994). Minimax efficiency of local polynomial fit estimators at boundaries.Tech. Rep. 2098, University of North Carolina.Google Scholar
  4. Chu, C. K. (1993). Nonparametric bivariate density estimation.Chin. J. Math. 21, 115–124.CrossRefGoogle Scholar
  5. Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter-plots.J. Amer. Statist. Assoc. 74, 829–836.CrossRefMathSciNetGoogle Scholar
  6. Copas, J. B. (1995). Local likelihood based on kernel censoring.J. Roy. Statist. Soc. B 57, 221–235.MathSciNetGoogle Scholar
  7. Efron, B. and Tibshirani, R. J. (1996). Using specially designed exponential families for density estimation.J. Amer. Statist. Assoc. (to appear).Google Scholar
  8. Fan, J. (1992). Design-adaptive nonparametric regression.J. Amer. Statist. Assoc. 87, 998–1004.CrossRefMathSciNetGoogle Scholar
  9. Fan, J., Gijbels, I., Hu, T.C. and Huang, L.S. (1996). A study of variable bandwidth selection for local polynomial regression.Statist. Sinica 6, 113–127.MathSciNetGoogle Scholar
  10. Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions.J. Amer. Statist. Assoc. 90, 141–150.CrossRefMathSciNetGoogle Scholar
  11. Fan, J. and Marron, J. S. (1994). Fast implementation of nonparametric curve estimators.J. Comput. Graphical Statist. 3, 35–56.CrossRefGoogle Scholar
  12. Finney, D. J. (1947).Probit Analysis. Cambridge: University Press.Google Scholar
  13. Hastie, T. J. and Loader, C. (1993). Local regression: automatic kernel carpentry.Statist. Sci. 8, 120–143 (with discussion).Google Scholar
  14. Hjort, N. L. and Glad, I. (1995). Nonparametric density estimation with a parametric start.Ann. Statist. 23, 882–904.MathSciNetGoogle Scholar
  15. Hjort, N. L. and Jones, M. C. (1994). Local fitting of regression models by likelihood: what's important?Tech. Rep. 10, University of Oslo.Google Scholar
  16. Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation.Ann. Statist. 24, (to appear).Google Scholar
  17. Jones, M. C. (1991). On correcting for variance inflation in kernel density estimation.Comput. Statist. Data Anal. 11, 3–15.CrossRefMathSciNetGoogle Scholar
  18. Jones, M. C. and Hjort, N. L. (1994). Letter to the Editor.Amer. Statist. 48, 353–354.Google Scholar
  19. Lejeune, M. and Sarda, P. (1992). Smooth estimators of distribution and density-functions.Comput. Statist. Data Anal. 14, 457–471.CrossRefMathSciNetGoogle Scholar
  20. Loader, C. R. (1996). Local likelihood density estimation.Ann Statist. 24, (to appear).Google Scholar
  21. Olkin, I. and Spiegelman, C. H. (1987). A semiparametric approach to density estimation.J. Amer. Statist. Assoc. 82, 858–865.CrossRefMathSciNetGoogle Scholar
  22. Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression.Ann. Statist. 22, 1346–1370.MathSciNetGoogle Scholar
  23. Scott, D. W. (1992).Multivariate Density Estimation: Theory, Practice and Visualization, New York: Wiley.zbMATHGoogle Scholar
  24. Silverman, B. W. (1986).Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.zbMATHGoogle Scholar
  25. Simonoff, J. S. (1995). Smoothing categorical data.J. Statist. Planning and Inference 47, 41–69.CrossRefMathSciNetGoogle Scholar
  26. Simonoff, J. S. (1996).Smoothing Methods in Statistics, New York: Springer-Verlag.zbMATHGoogle Scholar
  27. Tibshirani, R. J. and Hastie, T. J. (1987). Local likelihood estimation.J. Amer. Statist. Assoc. 82, 559–567.CrossRefMathSciNetGoogle Scholar
  28. Wand, M. P. and Jones, M. C. (1995).Kernel Smoothing, London: Chapman and Hall.zbMATHGoogle Scholar

Copyright information

© SEIO 1996

Authors and Affiliations

  • M. C. Jones
    • 1
  1. 1.Dept. of StatisticsThe Open University, Walton HallMilton KeynesU.K.

Personalised recommendations