Infection

, Volume 27, Supplement 1, pp S24–S29 | Cite as

The erlanger silver catheter:In vitro results for antimicrobial activity

  • T. Bechert
  • M. Böswald
  • S. Lugauer
  • A. Regenfus
  • J. Greil
  • J. -P. Guggenbichler

Summary

The antimicrobial activity of a silver-impregnated polymer catheter (the Erlanger silver catheter) was demonstrated by determining the microbial adhesion to the surface of the catheter and by measuring the rate of proliferation (viability) of microorganisms at this site. On the surface of a catheter impregnated with silver, according to previously described methods, the bacterial adhesion ofStaphylococcus epidermidis is reduced by 28–40%. Bacterial proliferation on the surface of the catheter and biofilm production are also substantially reduced by the elution of free silver ions from the catheter matrix. Bacteriostatic and bactericidal activities can be determined. The antimicrobial efficacy of the silver catheter is not reduced by blood components. There is no loss in antimicrobial activity for weeks after preincubation in water or phosphate buffered saline. The antimicrobial activity depends on the extent of the active silver surface.

References

  1. 1.
    Mermel, L. A., Stolz, S. M., Marki, D. G.: Surface antimicrobial activity of heparin-bonded and antiseptic-impregnated vascular catheters. J. Infect. Dis. 167 (1993) 920–924.PubMedGoogle Scholar
  2. 2.
    Jansen, B., Rinck, M., Wolbring, P., Strohmeier, A., Johns, T.:In vitro evaluation of the antimicrobial efficacy and biocompatibility of silver-coated central venous catheters. J. Biomater. Appl. 9 (1994) 55–70).Google Scholar
  3. 3.
    Zhao, G., Stevens, E.: Multiple parameters for the comprehensive evaluation of the susceptibility ofEscherichia coli to the silver ions. Biometals 11 (1998) 27–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Böswald, M., Girisch, M., Greil, J., Spies, T., Stehr, K., Krall, T., Guggenbichler, J.-P.: Antimicrobial activity and biocompatibility of polyurethane and silicone catheters containing low concentrations of silver: a new perspective in prevention of polymer-associated-foreign-body-infections. Zentralbl. Bakteriol. 283 (1995) 187–200.PubMedGoogle Scholar
  5. 5.
    Mack, D., Siemssen, N., Laufs, R.: Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherentStaphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect. Immun. 60 (1992) 2048–2057.PubMedGoogle Scholar
  6. 6.
    Heilmann, C., Gerke, C., Perdreau-Remington, F., Götz, F.: Characterization of Tn917 mutants ofStaphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64 (1996) 277–282.PubMedGoogle Scholar
  7. 7.
    Bisno, A. L., Waldvogel, F. A., eds.: Infections associated with indwelling medical devices. American Society for Microbiology, Washington D.C., 1994, 2nd ed.Google Scholar
  8. 8.
    Vaudaux, P., Pittet, D., Haeberli, A., Huggler, E., Nydegger, U. E., Lew, D. P., Waldvogel, F. A.: Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J. Infect. Dis. 160 (1989) 865–875.PubMedGoogle Scholar

Copyright information

© MMV Medien & Medizin Verlags GmbH 1999

Authors and Affiliations

  • T. Bechert
    • 1
  • M. Böswald
    • 1
  • S. Lugauer
    • 1
  • A. Regenfus
    • 1
  • J. Greil
    • 1
  • J. -P. Guggenbichler
    • 1
  1. 1.Klinik mit Poliklinik für Kinder und Jugendliche der Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations