Advertisement

Acta Mathematica Sinica

, Volume 1, Issue 2, pp 173–180 | Cite as

The extremal surfaces in the 3-dimensional Minkowski space

  • Gu Chaohao
Article

Keywords

Minimal Surface Mixed Type Minkowski Space Extremal Surface Dual Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cheng, S. Y. and Yau, S. T., Maximal space-like hypersurfaces in the Lorentz-Minkowski space,Annals of Math., 104 (1976), 407–419.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Quien, N., Plateau's Problem in Minkowski Space, Preprint 1983 Heidelberg.Google Scholar
  3. [3]
    Barbashov, B. M., Nesterenko, V. V. and Chervyakov, A. M., General solutions of nonlinear equations in the geometric theory of relativistic string,Commun. Math. Phys., 84 (1982), 471–481.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Gu, C. H., On the Motion of a String in a Curved Space-time (to appear in the Proc. of 1982 Grossmann Symposium).Google Scholar
  5. [5]
    Busemann, A., Infinitesimale Kegelige Uberschallstromungenn Schriften,Dtsch Akd. Lufo., 7B (1943), 105–122.MathSciNetGoogle Scholar
  6. [6]
    Lighthill, M. J., The diffraction of blast, I, II,Proc. Roy. Soc., 198 (1949), 454–470, 200 (1950).MathSciNetGoogle Scholar
  7. [7]
    Gu, C. H., On some differential equations of mixed type inn dimensional spaces,Scientia Sinica, 14 (1965), 1574–1580.MathSciNetGoogle Scholar
  8. [8]
    Gu, C. H., On partial differential equations of mixed type inn independent variables,Commun. Pure Appl. Math., 34 (1981), 333–345.Google Scholar
  9. [9]
    Hua, L. K., A speech on partial differential equations of mixed type (in Chinese),Jour. Chin. Univ. of Science and Technology, 1965, 1–27.Google Scholar
  10. [10]
    Courant, R. and Hilbert, D., Method of Mathematical Physics, Vol. II, 1962 New York.Google Scholar
  11. [11]
    Ossermann, R., A Survey of Minimal Surfaces, 1969.Google Scholar
  12. [12]
    Xavier, F. O., The Gauss map of complete non-flat minimal surface cannot omit 7 points of the sphere,Annals of Math., 113 (1981), 211–214.CrossRefMathSciNetGoogle Scholar

Copyright information

© Science Press 1985

Authors and Affiliations

  • Gu Chaohao
    • 1
  1. 1.Institute of MathematicsF6dan UniversityChina

Personalised recommendations