Arkiv för Matematik

, Volume 33, Issue 2, pp 385–403

Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach

  • Bernd Stratmann


We introduce and study the Jarník limit set ℐσ of a geometrically finite Kleinian group with parabolic elements. The set ℐσ is the dynamical equivalent of the classical set of well approximable limit points. By generalizing the method of Jarník in the theory of Diophantine approximations, we estimate the dimension of ℐσ with respect to the Patterson measure. In the case in which the exponent of convergence of the group does not exceed the maximal rank of the parabolic fixed points, and hence in particular for all finitely generated Fuchsian groups, it is shown that this leads to a complete description of ℐσ in terms of Hausdorff dimension. For the remaining case, we derive some estimates for the Hausdorff dimension and the packing dimension of ℐσ.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beardon, A. F., On the Hausdorff dimension of general Cantor sets,Math. Proc. Cambridge Philos. Soc. 61 (1965), 679–694.MathSciNetMATHGoogle Scholar
  2. 2.
    Besicovitch, A. S., Sets of fractional dimension (IV): On rational approximation to real numbers,J. London Math. Soc. 9 (1934), 126–131.MATHGoogle Scholar
  3. 3.
    Billingsley, P.,Ergodic Theory and Information, Wiley & Sons, New York, 1965.MATHGoogle Scholar
  4. 4.
    Denker, M. andUrbański, M., Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point,J. London Math. Soc. 43 (1991), 107–118.MathSciNetMATHGoogle Scholar
  5. 5.
    Denker, M. andUrbański, M., Geometric measures for parabolic rational maps,Ergodic Theory Dynamical Systems 12 (1992), 53–66.MATHGoogle Scholar
  6. 6.
    Denker, M. andUrbański, M., The capacity of parabolic Julia sets,Math. Z. 211 (1992), 73–86.MathSciNetMATHGoogle Scholar
  7. 7.
    Falconer, K.,Fractal Geometry, Wiley & Sons, New York, 1990.MATHGoogle Scholar
  8. 8.
    Jarník, V., Diophantische Approximationen und Hausdorff Mass,Mat. Sb. 36 (1929), 371–382.MATHGoogle Scholar
  9. 9.
    Melián, M. V. andPestana, D., Geodesic excursions into cusps in finite-volume hyperbolic manifolds,Michigan Math. J. 40 (1993), 77–93.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Nicholls, P. J.,The Ergodic Theory of Discrete Groups, London Math. Soc. Lecture Note Ser.143, Cambridge Univ. Press, Cambridge, 1989.MATHGoogle Scholar
  11. 11.
    Patterson, S. J., The limit set of a Fuchsian group,Acta Math. 136 (1976), 241–273.CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Patterson, S. J., Lectures on measures on limit sets of Kleinian groups, inAnalytical and Geometric Aspects of Hyperbolic Space (Epstein, D. B. A., ed.), London Math. Soc. Lecture Note Ser.111, pp. 281–323, Cambridge Univ. Press, Cambridge, 1987.Google Scholar
  13. 13.
    Stratmann, B., Diophantine approximation in Kleinian groups,Math. Proc. Cambridge Philos. Soc. 116 (1994), 57–78.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Stratmann, B., The Hausdorff dimension of bounded geodesics on geometrically finite manifolds,Preprint in Math. Gottingensis 39 (1993), submitted toErgodic Theory Dynamical Systems.Google Scholar
  15. 15.
    Stratmann, B. andUrbański, M., The box-counting dimension for geometrically finite Kleinian groups,Preprint in Math. Gottingensis 35 (1993), to appear inFund. Math. Google Scholar
  16. 16.
    Stratmann, B. andUrbański, M., In preparation.Google Scholar
  17. 17.
    Stratmann, B. andVelani, S., The Patterson measure for geometrically finite groups with parabolic elements, new and old,Proc. London Math. Soc. 71 (1995), 197–220.MathSciNetMATHGoogle Scholar
  18. 18.
    Sullivan, D., The density at infinity of a discrete group,Inst. Hautes Études Sci. 50 (1979), 171–202.MathSciNetMATHGoogle Scholar
  19. 19.
    Sullivan, D., Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups,Acta Math. 153 (1984), 259–277.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1995

Authors and Affiliations

  • Bernd Stratmann
    • 1
  1. 1.Mathematisches Institut der Universität GöttingenGöttingenGermany

Personalised recommendations