Advertisement

Acta Mathematica

, Volume 100, Issue 1–2, pp 45–92 | Cite as

On a special class ofp-groups

  • N. Blackburn
Article

Keywords

Normal Subgroup Inductive Hypothesis Special Class Maximal Subgroup Nilpotent Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    N. Blackburn, On prime-power groups in which the derived group has two generators.Proc. Camb. Phil. Soc. 53 (1957) 19–27.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2].
    T. E. Easterfield, Ph.D. dissertation, University of Cambridge, 1940.Google Scholar
  3. [3].
    P. Hall, A contribution to the theory of groups of prime-power order.Proc. London Math. Soc. (2), 36 (1933), 29–95.zbMATHGoogle Scholar
  4. [4].
    ——, On a theorem of Frobenius.Proc. London Math. Soc. (2), 36 (1935), 468–501.Google Scholar
  5. [5].
    ——, The classification of prime-power groups.J. reine angew. Math. 182 (1940), 130–141.zbMATHMathSciNetGoogle Scholar
  6. [6].
    L. Kaloujnine, La structure desp-groupes de Sylow des groupes symmétriques finis.Ann. sci. Éc. norm. sup., Paris, (3), 65 (1948), 239–276.zbMATHMathSciNetGoogle Scholar
  7. [7].
    ——, Sur quelques propriétés des groupes d'automorphismes d'un groupe abstrait.C. R. Acad. Sci. Paris 230 (1950), 2067–2069.zbMATHMathSciNetGoogle Scholar
  8. [8].
    ——, Sur quelques propriétés des groupes d'automorphismes d'un groupe abstrait, (Généralisation d'un théoréme de M. Ph. Hall),C. R. Acad. Sci. Paris, 231 (1950), 400–402.zbMATHMathSciNetGoogle Scholar
  9. [9].
    O. Schreier, Über die Erweiterung von Gruppen, II.Hamburg. Abh. 4 (1926), 321–346.Google Scholar
  10. [10].
    J. A. Séguier,Éléments de la théorie des groupes abstraits. Paris, 1904.Google Scholar
  11. [11].
    A. Wiman, Über mit Diedergruppen verwandtep-Gruppen.Arkiv för Matematik, Astronomi och Fysik 33A (1946).Google Scholar
  12. [12].
    ——, Überp-Gruppen von maximaler Klasse,Acta Math. 88 (1952), 317–346.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    H. Zassenhaus,Lehrbuch der Gruppentheorie. Leipzig-Berlin, 1937.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri 1958

Authors and Affiliations

  • N. Blackburn
    • 1
  1. 1.ManchesterEngland

Personalised recommendations