Arkiv för Matematik

, Volume 35, Issue 1, pp 157–169 | Cite as

A Carleman type theorem for proper holomorphic embeddings

  • Gregery T. Buzzard
  • Franc Forstneric


Entire Function Stein Manifold Carleman Approximation Smooth Submanifolds Holomorphic Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abhyankar, S. S. andMoh, T. T., Embeddings of the line in the plane,J. Reine Angew. Math. 276 (1975), 148–166.MathSciNetMATHGoogle Scholar
  2. 2.
    Arakelian, N. U., Uniform approximation on closed sets by entire functions,Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1187–1206 (Russian).MathSciNetGoogle Scholar
  3. 3.
    Buzzard, G. andFornæss, J. E., An embedding ofC intoC 2 with hyperbolic complement,Math. Ann. 306 (1996), 539–546.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Carleman, T., Sur un théorème de Weierstrass,Ark. Mat. Astr. Fys. 20:3 (1927).Google Scholar
  5. 5.
    Eliashberg, Y. andGromov, M., Embeddings of Stein manifolds of dimensionn into the affine space of dimension3n/2+1,Ann. of Math. 136 (1992), 123–135.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Forstneric, F., Approximation by automorphisms on smooth submanifolds ofC n,Math. Ann. 300 (1994), 719–738.CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Forstneric, F., Interpolation by holomorphic automorphisms and embeddings inC n, Preprint, 1996.Google Scholar
  8. 8.
    Forstneric, F., Globevnik, J. andRosay, J.-P., Non straightenable complex lines inC 2,Ark. Mat. 34 (1996), 97–101.MathSciNetMATHGoogle Scholar
  9. 9.
    Forstneric, F., Globevnik, J. andStensønes, B., Embedding holomorphic discs through discrete sets,Math. Ann. 305 (1995), 559–569.CrossRefGoogle Scholar
  10. 10.
    Forstneric, F. andLøw, E., Global holomorphic equivalence of certain smooth submanifolds inC n, to appear inIndiana Univ. Math. J. (1997).Google Scholar
  11. 11.
    Gaier, D.,Lectures on Carleman Approximation, Birkhäuser, Boston, Mass., 1987.Google Scholar
  12. 12.
    Hörmander, L.,An Introduction to Complex Analysis in Several Variables, 3rd ed., North-Holland, Amsterdam, 1990.MATHGoogle Scholar
  13. 13.
    Narasimhan, R.,Analysis on Real and Complex Manifolds, 3rd printing, North-Holland, Amsterdam, 1985.MATHGoogle Scholar
  14. 14.
    Rosay, J.-P. andRudin, W., Arakelian's approximation theorem,Amer. Math. Monthly 96 (1989), 432–434.CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Rosay, J.-P. andRudin, W., Holomorphic maps fromC n toC n,Trans. Amer. Math. Soc. 310 (1988), 47–86.CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Rosay, J.-P. andRudin, W., Holomorphic embeddings ofC inC n, inSeveral complex variables: Proceedings of the Mittag-Leffler Institute, 1987–88 (Fornæss, J. E., ed.), pp. 563–569.Math. Notes 38, Princeton Univ. Press, Princeton, N. J., 1993.Google Scholar
  17. 17.
    Rudin, W.,Real and Complex Analysis, 3rd ed., McGraw Hill, New York, 1987.MATHGoogle Scholar
  18. 18.
    Suzuki, M., Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espaceC 2,J. Math. Soc. Japan 26 (1974), 241–257.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1997

Authors and Affiliations

  • Gregery T. Buzzard
    • 1
  • Franc Forstneric
    • 2
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA
  2. 2.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations