Arkiv för Matematik

, Volume 34, Issue 1, pp 97–101 | Cite as

Non straightenable complex lines in C2

  • Franc Forstneric
  • Josip Globevnik
  • Jean-Pierre Rosay


Complex Line Biholomorphic Mapping Discrete Sequence Holomorphic Automorphism Polynomial Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abhyankar, S. S. andMoh, T. T., Embeddings of the line in the plane,J. Reine Angew. Math. 276 (1975), 148–166.MathSciNetMATHGoogle Scholar
  2. 2.
    Andersén, E. andLempert, L., On the group of holomorphic automorphisms ofC n,Invent. Math. 110 (1992), 371–388.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Buzzard, G. andFornaess, J. E., An embedding ofC inC 2 with hyperbolic complement,Preprint.Google Scholar
  4. 4.
    Forstneric, F. andRosay, J-P., Approximation of biholomorphic mappings by automorphisms ofC n,Invent. Math. 112 (1993), 323–349. Erratum inInvent. Math. 118 (1994), 573–574CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Globevnik, J. andStensones, B., Holomorphic embeddings of planar domains intoC 2,Math. Ann. 303 (1995), 579–597.CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Gruman, L., L′ image d'une application holomorphe,Ann. Fac. Sci. Toulouse Math. 12 (1991), 75–101.MathSciNetMATHGoogle Scholar
  7. 7.
    Jelonek, Z., The extension of regular and rational embeddings,Math. Ann. 277 (1987), 113–120.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Kraft, H.,Challenging Problems on Affine n-space, Bourbaki Seminar47,802, June 95, 1994–95.Google Scholar
  9. 9.
    Rosay, J-P. andRudin, W., Holomorphic maps fromC n toC n,Trans. Amer. Math. Soc. 310 (1988), 47–86.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Rosay, J-P. andRudin, W., Holomorphic embeddings ofC inC n, inSeveral Complex Variables: Proceedings of the Mittag-Leffler Institute, 1987–88 (Fornaess, J. E., ed.), pp. 563–569. Math. Notes38, Princeton Univ. Press, Princeton, N. J., 1993.Google Scholar
  11. 11.
    Suzuki, M., Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espaceC 2,J. Math. Soc. Japan 26 (1974), 241–257.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1996

Authors and Affiliations

  • Franc Forstneric
    • 1
  • Josip Globevnik
    • 2
  • Jean-Pierre Rosay
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMadisonU.S.A.
  2. 2.Institute of Mathematics Physics and MechanicsLjubljanaSlovenia

Personalised recommendations