Arkiv för Matematik

, Volume 34, Issue 1, pp 73–96

Toric residues

  • David A. Cox


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audin, M.,The Topology of Torus Actions on Symplectic Manifolds, Progress in Math.93, Birkhäuser Verlag, Basel-Boston, 1991.MATHGoogle Scholar
  2. 2.
    Baily, W., The decomposition theorem forV-manifolds, Amer. J. Math.78 (1956), 862–888.CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Batyrev, V., Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori,Duke Math. J. 69 (1993), 349–409.CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Batyrev, V. andCox, D., On the Hodge structure of projective hypersurfaces in toric varieties,Duke Math. J. 75 (1994), 293–338.CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bruns, W. andHerzog, J.,Cohen-Macaulay Rings, Cambridge Univ. Press, Cambridge, 1993.MATHGoogle Scholar
  6. 6.
    Cattani, E., Cox, D. andDickenstein, A., Residues in toric varieties, Preprint, 1995.Google Scholar
  7. 7.
    Cox, D., The homogeneous coordinate ring of a toric variety,J. Algebraic Geom. 4 (1995), 17–50.MathSciNetMATHGoogle Scholar
  8. 8.
    Danilov, V., The geometry of toric varieties,Uspekhi Mat. Nauk 33:2 (1978), 85–134. (Russian). English transl.: Russian Math. Surveys33 (1978), 97–154.MathSciNetGoogle Scholar
  9. 9.
    Fulton, W.,Introduction to Toric Varieties, Princeton Univ. Press, Princeton, 1993.MATHGoogle Scholar
  10. 10.
    Gelfand, I., Kapranov, M. andZelevinsky, A.,Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser Verlag, Basel-Boston, 1994.MATHGoogle Scholar
  11. 11.
    Goto, S. andWatanabe, K., On graded rings I,J. Math. Soc. Japan 30 (1978), 179–213.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Griffiths, P., On the periods of certain rational integrals I,Ann. of. Math. 90 (1969), 460–495.CrossRefGoogle Scholar
  13. 13.
    Griffiths, P. andHarris, J.,Principles of Algebraic Geometry, Wiley, New York, 1978.MATHGoogle Scholar
  14. 14.
    Hartshorne, R.,Residues and Duality, Lecture Notes in Math.20, Springer-Verlag, Berlin-Heidelberg-New York, 1966.MATHGoogle Scholar
  15. 15.
    Hochster, M., Rings of invariants of tori, Cohen—Macaulay rings generated by monomials, and polytopes,Ann. of Math. 96 (1972), 318–337.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kleiman, S., Toward a numerical theory of ampleness,Ann. of Math. 84 (1966), 293–344.CrossRefMathSciNetGoogle Scholar
  17. 17.
    Morrison, D. andPlesser, M. R., Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties,Nuclear Phys. B 440 (1995), 279–354.CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Oda, T.,Convex Bodies and Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1988.MATHGoogle Scholar
  19. 19.
    Peters, C. andSteenbrink, J., Infinitesimal variation of Hodge structure and the generic Torelli theorem for projective hypersurfaces, inClassification of Algebraic and Analytic Manifolds (Ueno, K., ed.). Progress in Math.39, pp. 399–463, Birkhäuser Verlag, Basel-Boston, 1983.Google Scholar
  20. 20.
    Sternberg, S.,Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.MATHGoogle Scholar
  21. 21.
    Tsikh, A.,Multidimensional Residues and their Applications, Amer. Math. Soc., Providence, R. I., 1992.MATHGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1996

Authors and Affiliations

  • David A. Cox
    • 1
  1. 1.Department of Mathematics and Computer ScienceAmherst CollegeAmherstU.S.A.

Personalised recommendations